Laplace Transform

2008-12-14 7:04 pm
Solve the IVP's by the Laplace Transform:

y''(t) + 4y(t) = 2 cos(2t) y(0) = 1, y'(0) = 0

回答 (1)

2008-12-15 5:12 am
✔ 最佳答案
y''(t) + 4y(t) = 2 cos(2t)
L[y''(t) + 4y(t)] = 2L[ cos(2t)]
[s^2+4]Y(s)-s=2[s/(s^2+4)]
Y(s)=(s^3+6s)/(s^2+4)^2
So y(t)=L^(-1)[Y(s)]
Since L^(-1)[s/(s^2+4)^2]=(1/4)(tsin2t)
L^(-1)[s^3/(s^2+4)^2]=[(1/4)(sin2t+2tcos2t)]'=(1/4)(2cos2t-4tsin2t+2cos2t)
So y(t)=(1/4)(2cos2t-4tsin2t+2cos2t)+(6/4)(tsin2t)=cos2t-tsin2t

2008-12-14 21:15:16 補充:
y(t)=(1/4)(2cos2t-4tsin2t+2cos2t)+(6/4)(tsin2t)=cos2t+(1/2)(tsin2t)


收錄日期: 2021-04-13 16:18:43
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20081214000051KK00510

檢視 Wayback Machine 備份