✔ 最佳答案
21.
BAF = A
Consider ΔABE:
A + ABE + AEB = 180o ( sum of Δ)
A + ABE + 38o = 180o
ABE = 142o - A ...... (1)
Consider ΔACF:
A + AFC + ACF = 180o ( sum of Δ)
A + AFC + 46o = 180o
AFC = 134o - A ...... (2)
Consider quad. ABDF:
ABE + AFC = 180o (opp.s, concyclic quad.) ...... (3)
Put (1) and (2) into (3):
(142o - A) + (134o - A) = 180o
276o - 2A = 180o
2A = 96o
A = 48o
BAF = 48o
=====
22.(a)
Angle of major segment of AC
= 180o - 130o (opp.s, concyclic quad.)
= 50o
AOC
= 2 x 50o (s at centre)
= 100o
22(b)
Consider quad. AOCK:
AOC + CKB = 180o (opp.s, concyclic quad.)
100o + CKB = 180o
CKB = 80o
=====
23.
Join BD.
BDC = 90o ( in semi-circle)
Consider quad. ABDE:
EAC = BDC (ext., concyclic quad.)
EAC = 90o
=====
24.
Join QR.
Consider quad. QRST:
PQR = RST (ext., concyclic quad.)
PQR = 114o
Consider quad. PQRO:
POR + PQR = 180o (opp.s, concyclic quad.)
POR + 114o = 180o
POR = 66o
=====
41.
The answer is B.
XA•XB = XD•XC (intersecting chords)
6(6 + 4) = 5(5 + CD)
60 = 25 + 5CD
5CD = 35
CD = 7
=====
1.
x2 - 8x + 15 = 0
(x - 3)(x - 5) = 0
x = 3 ooro x = 5
=====
2.
3x2 - 7x - 2 = 0
x = {-(-7)+√[(-7)2 - 4(3)(-2)]}/(2x3)} or x = {-(-7)+√[(-7)2 - 4(3)(-2)]}/(2x3)}
x = (49 + √73)/6 ooro x = (49 - √73)/6
=====
3.
2x2 + 4x + a = 5
2x2 + 4x + (a - 5) = 0
The equation has no real root. Hence, Δ < 0
(4)2 - 4(2)(a - 5) < 0
16 - 8a + 40 < 0
56 - 8a < 0
7 - a < 0
a > 7
=