amaths ~

2008-12-07 4:08 am
Show that sin3x/sinx = 2cos2x + 1

thanks ~

回答 (2)

2008-12-07 4:17 am
✔ 最佳答案
LHS
=sin3x/sinx
=(3sinx-4sin^3x)/sinx
=3-4sin^2x
=3-4(1-cos^2x)
=3-4+4cos^2x
=4cos^2x-1
=4[(1+cos2x)/2]-1
=2cos2x + 1
=RHS
2008-12-07 5:18 am
LHS

sin3x/sinx
= [sin(2x x)]/sinx
= [sin2xcosx+sinxcos2x]/sinx
= [2sinxcosxcosx+(2cosxcosx-1)sinx]/sinx
= 2cosxcosx+2cosxcosx-1
= 2cosxcosx+cos2x
= 2cosxcosx+cosx-1+1
= cos2x+cos2x+1
= 2cos2x+1

= RHS

(I have to paste my answer here 'cuz I accidentally deleted my answer)


收錄日期: 2021-04-25 16:58:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20081206000051KK01504

檢視 Wayback Machine 備份