1a.Show that d/dx cot^(n-1) x = -(n-1)cot^n x -(n-1)cot^(n-2) x
b. Hence show that S(cot^n x)dx = -S[cot^(n-2) x] -cot^(n-1) x / (n-1)
2a. Let y= cos x sin^(n-1) x, where n is a positive interger. Find dy/dx.
Hence show that
S(sin^n x)dx = -cos x sin^(n-1) x +(n-1)S[sin^(n-2) xos^2 x]dx...........(*)
b.By writing cos^2 x = 1-sin^2 x in (*), show that
S(sin^n x)dx = -cosx sin^(n-1) x /n + (n-1)/n