Factoring Expressions by Grouping?

2008-11-21 1:01 pm
How do you do this problem?

12c^3+15c^2-4c-5
更新1:

Is this factorable?

回答 (6)

2008-11-21 1:09 pm
✔ 最佳答案
12c^3+15c^2-4c-5 = 3c^2(4c +5) -(4c+5) = (3c^2-1)(4c+5)
2008-11-21 1:14 pm
yes, it's factorable.

12c^3 + 15c^2 - 4c - 5

(12c^3 + 15c^2) - (4c + 5)

3c^2 (4c + 5) - (4c + 5)

(3c^2 - 1) (4c + 5)

2008-11-21 1:09 pm
12c^3+15c^2-4c-5 = 3c^2(4c+5) -(4c+5) = (3c^2 - 1)(4c+5)
2008-11-21 3:12 pm
12c^3 + 15c^2 - 4c - 5
= (12c^3 + 15c^2) - (4c + 5)
= 3c^2(4c + 5) - 1(4c + 5)
= (4c + 5)(3c^2 - 1)
2008-11-21 1:20 pm
4c(3c^2-1)+5(3c^2-1)=0
(4c+5)(3c^2-1)=0
you have three solutions
c1=-5/4
c2=-1/sqrt3
c3=1/sqrt3
2008-11-21 1:14 pm
12c³+15c²-4c-5
= (12c³+15c²) - (4c+5)
= 3c²(4c + 5) - (4c + 5)
= (4c + 5)(3c² - 1)



收錄日期: 2021-05-01 11:31:58
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20081121050149AAY77VJ

檢視 Wayback Machine 備份