高階factorization
大家都知道,(x^2)+1不能被因式分解,
但(x^4)+(x^2)+1卻等於[(x^2)+x+1][(x^2)-x+1],
而(x^6)+(x^4)+(x^2)+1=[(x^4)+1][(x^2)+1]
問題:(x^8)+(x^6)+(x^4)+(x^2)+1能否被因式分解(factorize)????
咁[x^y]+[x^(y-2)]+[x^(y-4)]+........+(x^4)+(x^2)+1(y=positive even no.>=2 )呢條式有冇公式可以判斷條式可唔可以被因數分解(factorize)?
(x^y=x的y次方)
回答 (2)
若考慮整系數因式,則x^8+x^6+...+1不能被分解。
若考慮實系數因式,則可被分解為4個二次因式。
一般來說,x^2n+...+1總可被分解為實系數二次因式。
但若只考慮整系數,則不一定可以分解,
至少有沒有簡單判別方法...我不知道,但至少我沒聽過。
參考: ME
I am not sure if it can be factorized, but I know how to simplify it.
let y = 2n > 0
[x^y] [x^(y-2)] [x^(y-4)] ........ (x^4) (x^2) 1
=[x^2]^n [x^2]^(n-1) [x^2]^(n-2) ........ (x^2)^2 (x^2) 1
=[(x^2)^(n 1) -1]/[x^2-1]
instead, you may try to prove the factorizability of [(x^2)^(n 1) -1]/[x^2-1]
for all n>0
2008-11-20 23:07:08 補充:
typo:
[(x^2)^(n 1) -1]/[x^2-1]
should be
[(x^2)^(n+1) -1]/[x^2-1]
收錄日期: 2021-04-25 15:58:09
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20081120000051KK01786
檢視 Wayback Machine 備份