✔ 最佳答案
1:
(a)
長方形ABCD面積 = 8 * 12 cm2 = 96 cm2
ΔCDQ面積 = (1/2) * 12 * (8 – x) cm2 = (48 – 6x) cm2
ΔCBP面積 = (1/2) * 8 * (12 – x) cm2 = (48 – 4x) cm2
ΔAPQ面積 = (1/2) * x * x = x2/2 cm2
ΔPCQ面積
=長方形ABCD面積 -ΔCDQ面積 -ΔCBP面積 -ΔAPQ面積
= [96 – (48 – 6x) – (48 – 4x) – x2/2] cm2
= [96 – 48 + 6x – 48 + 4x – x2/2] cm2
= (10x – x2/2) cm2
(b)
ΔPCQ面積
= (10x – x2/2) cm2
= (20x – x2)/2 cm2
= –(x2 – 20x)/2 cm2
= [102/2 – (x2 – 20x + 102)/2] cm2
= [50 – (x – 10)2/2] cm2
無論x是任何實數,–(x – 10)2/2 ≤ 0
所以,50 – (x – 10)2/2 ≤ 50
ΔPCQ的最大面積 = 50 cm2
=====
2:
(a)(i)
由A作BC的垂直平分線(三角形的高),與BC 相交於 M。
AM = 4 cm
BM = 24/2 cm = 12 cm
BQ = x cm
PQ/AM = BQ/BM
PQ/(4 cm) = (x cm)/(12 cm)
PQ = x/3 cm
(a)(ii)
QR = (24 – 2x) cm
長方形PQRS面積
= PQ * QR
= (x/3)(24 – 2x) cm2
= (8x – 2x2/3) cm2
(b)
長方形PQRS面積
= (8x – 2x2/3) cm2
= -(2/3)(x2 – 12x) cm2
= [(2/3)(6)2 – (2/3)(x2 – 12x + 62)] cm2
= [24 – (2/3)(x – 6)2] cm2
無論x是任何實數,–(2/3)(x – 6)2 ≤ 0
所以 24 – (2/3)(x – 6)2 ≤ 24
長方形PQRS的最大面積 = 24 cm2
=====
3:
(a)
盒子闊度和長度的總和 = (84 – 3*8)/2 cm = 30 cm
盒子的闊度 = x cm
盒子的長度 = (30 – x) cm
盒子的高度 = 3 cm
盒子的容積
= 長 * 闊 * 高
= (30 – x) * x * 3 cm2
= (90x – 3x2) cm2
(b)
盒子的容積
= (90x – 3x2) cm2
= -3(x2 – 30x) cm2
= [3(15)2 – 3(x2 – 30x + 152)] cm2
= [675 – 3(x – 15)2] cm2
無論x是任何實數,–3(x – 15)2 ≤ 0
所以 675 – 3(x – 15)2 ≤ 675
最大值時,–3(x – 15)2 = 0
x – 15 = 0
x = 15
30 – x = 15
要使容積達致最大,長度 = 15 cm,闊度 = 15 cm。
=