大家都知道,(x^2)+1不能被因式分解,
但(x^4)+(x^2)+1卻等於[(x^2)+x+1][(x^2)-x+1],
而(x^6)+(x^4)+(x^2)+1=[(x^4)+1][(x^2)+1]
問題:(x^8)+(x^6)+(x^4)+(x^2)+1能否被分解????
咁[x^y]+[x^(y-2)]+[x^(y-4)]+........+(x^4)+(x^2)+1(y=positive even no.>=2 )呢條式有冇公式可以判斷條式可唔可以被分解?(即係有冇公解)
(x^y=x的y次方)