關於A.Maths (20點)

2008-11-19 3:36 am
Mathematical Induction
1x2+2x4+3x5+…+n(n+1)=1/3 n(n+1)(n+2)

其實我想知,點樣淨係用L.H.S.(1x2+2x4+3x5+…+n(n+1))
去搵R.H.S.(1/3 n(n+1)(n+2)) 出黎?
有冇d咩公式之類的東西可以做到?
更新1:

唔好意思.... 其實係我講得唔夠清楚....... 條問題其實都唔係好關MI事.... 我淨係想知道,d人點會知道1x2+2x4+3x5+…+n(n+1)=1/3 n(n+1)(n+2)? 又例如某某數學家搵到1+2+3+…+n等於「頭加尾乘項數除以二」 除左用腦諗,仲有咩方法係能夠知道: 1+2+3+…+n等於「頭加尾乘項數除以二」、1x2+2x4+3x5+…+n(n+1)=1/3 n(n+1)(n+2)?

回答 (5)

2008-11-19 4:08 am
✔ 最佳答案
Mathematical Induction 1x2+2x4+3x5+…+n(n+1)=1/3 n(n+1)(n+2)
得一個方法就係用數學歸納法= = 無公式用既.....我做一次啦~

設s(n)為命題
1x2+2x4+3x5+…+n(n+1)=1/3 n(n+1)(n+2)

考慮s(1)
左=1(1+1)=2
右=1/3 1(1+1)(1+2)=2
所以s(1)成立

假設s(k)成立
考慮s(k+1)

=1x2+2x4+3x5+…+k(k+1)+(k+1)[(k+1)+1]
=1/3 k(k+1)(k+2) +(k+1)[(k+1)+1]
=1/3 k(k+1)(k+2) +(k+1)(k+2)
=1/3 (k+1)(k+2) (k+3).................................抽個1/3 (k+1)(k+2)出泥
=1/3 (k+1)[(k+1)+1][(k+1)+2]
=右

所以s(k+1)成立
根據數學歸納法的原理,對於所有自然數n , s(n)都成立


如有問題 add我email啦@@ 有時吳得閒泥睇返...
參考: 會考數學拿c既人~
2008-11-19 4:16 am
let P(n) be the proposition
"1x2+2x4+3x5+…+n(n+1)=1/3 n(n+1)(n+2) ----(*)"
when n = 1, LHS = 1(1+1) = 2
RHS = 1/3 1(1+1)(1+2)
=2
=LHS
∴P(1) is true.

assume P(k) is true for some positive integer k.
i.e. 1x2+2x4+3x5+…+k(k+1)=1/3 k(k+1)(k+2)
Then 1x2+2x4+3x5+…+k(k+1) + (k+1)[(k+1)+1] <---呢個係下個term
=1/3 k(k+1)(k+2) + (k+1)[(k+1)+1]
=1/3 [k(k+1)(k+2) + 3(k+1)(k+2)]<-----通分母
=1/3 (3+k)(k+1)(k+2) <-------抽common factor
=1/3 (k+1)[(k+1)+1][(k+1)+2]

By the principle of mathematical induction, P(n) is true for all positive integers n.
參考: my a.maths knowledge.
2008-11-19 4:11 am
2008-11-19 4:10 am
Let P(n) be the proposition

when n=1
LHS:1(1+1)=2
RHS:1/3*1*(1+1)(1+2)=2 =LHS
so LHS=RHS
SO P(1) is true

assume P(k) is true for some postive integer k,
1x2+2x4+3x5+…+k(k+1)= 1/3k(k+1)(k+2)

when n=k+1

LHS:1x2+2x4+3x5+…+1/3k(k+1)(k+2)+k+1(k+2)
=1/3(k+1)(k+2)[k+3]
=1/3(k+1)(k+2)(k+3)

RHS:1/3(k+1)(k+1+1)(k+2+1)
=1/3(k+1)(k+2)(k+3)

SO LHS=RHS
SO P(k+1) is true

By the principle of MI ,P(n) is true for all positive integer n.
參考: ^_^
2008-11-19 4:05 am
M.I.唔係用黎淨係用LHS去搵RHS出黎,而且M.I.唔係公式。
Mathematical Induction
1x2+2x4+3x5+…+n(n+1)=1/3 n(n+1)(n+2)
For all positive integer n.
Prove: Let the statment be S(n).
For n = 1
LHS = 1*2
= 2
RHS = 1/3 n(n+1)(n+2)
= 1/3 (2)(3)
= 2
= LHS
So, S(1) is true.
Let S(k) is true.
i.e. 1*2+2*4+3*5+…+k(k+1)=1/3 k(k+1)(k+2)
For n = k+1
LHS = 1*2+2*4+3*5+…+k(k+1)+(k+1)(k+2)
= 1/3 k(k+1)(k+2)+(k+1)(k+2)
= 1/3 (k+1)(k+2) (k+3)
= 1/3 (k+1)((k+1)+1)((k+1)+2)
= RHS
So, S(k+1) is also true.
By M.I., S(n) is true for all +ve integer n.


收錄日期: 2021-04-23 20:35:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20081118000051KK01500

檢視 Wayback Machine 備份