愛因斯坦的空間扭曲是否完全推反萬有引力?

2008-11-15 11:14 pm
問1﹣為何有物體靜止在3維空間時。空間便會扭曲?
問2﹣空間扭曲時,行動中的物體便會因空間扭曲而改變行動中的方向,便是愛因斯坦的"引力“了??
問3﹣愛因斯坦的空間扭曲是否完全推反萬有引力?
問4﹣地心吸力是,“空間扭曲引力“ 或是 "萬有引力“?

在下沒有身理常識,只很喜愛看各類型書本,近來在看相對論,所以提出一些很難明的問題,請各位老師盡量用簡易的字眼或比喻來幫解答,十分感謝
更新1:

************************************************************ 十分 感謝各位解答..我想我了解多了一點-空間扭曲是解釋萬有引力的重力問題. 但仍要時間消化.. 自問我不能(也不夠能力)分析誰是最好的答覆.只好選用先答者. 但我感到各位老師都是有識有心之人..祝各位生活愉快

回答 (4)

2008-11-16 5:09 am
✔ 最佳答案
Some defination first, space here is the meaning of space-time (空間+時間). In Newton's or classical physic time and space are indepent but they are the same kind in relativity. The meaning of space is not only for 3D or 4D (3D+time), in a general speaking, it can be extented to all, say 1D up to 22D. Space (空間) is not universe (宇宙).

1) In a better wording, if there exists a mass in the space, then the space would be distorted, whatever the mass is moving or not. The present itself will destort the space. That is a good question same as to ask (someone) what is gravity, I can tell you that no one can answer you, at least in guaduate school (The master and doctor students).

2) Einstein's idea is, light (光) will passing though the shortest path in the space, even the space is distorted or not. In the conversion to classic physics, It is same as the change in the path in gravity. But please keep in mind that there is no gravity in relativity, it is always compared with the gravity mainly due to it is more easy to be accept for (normal) people.

3) When you use relativity in our daily life, you will find that the answer is almost same as Newton's law. The different is mainly applied in strong gravitational force or large mass, with high speed motions. I would say Newton's law of motion can be treated as a simplifer for daily. The astronauts of USA had said that their spaceship is guide by Newton. The main application of relativtics correction is applied in GPS.

4) As I noticed before, there is no gravity in relativity, so you cannot put them all together and take comparision, relativity is a whole band of new ideas compare to classic physics, even it can be only applied to extraodinary places, like the evolution of the universe. That is quite interesting to think that the all ideas in our daily life does not work in that situation (same as in quantum physics).



2008-11-15 21:09:25 補充:
If you are interest in relativity, you mare better to start from special relativity, since it is only due with high speed motion and idea of space-time, let you to have a brain storm to accept the new ideas.

2008-11-15 21:09:32 補充:
The general relativity are mainly about "gravitational", the destortion of space. It is much harder even you do not go into its maths, you need to have new idea of the space.

2008-11-15 21:09:40 補充:
There are many popular science books in libary, but I have not go to library for a long time, I cannot make suggestions......

2008-11-15 21:09:56 補充:
But beside the library, you can also go to find the Newton's magazine, which is a Japanese popular science magazine with Taiwan traditional chinese translated version,

2008-11-15 21:10:00 補充:
and I find there is some simplier chinese version in 尚書坊, it costs HKD20 dollar, which contains many latest science related discovery, and sometimes it will have topics on relativity or universe.
2008-11-17 6:28 am
問1﹣為何有物體靜止在3維空間時。空間便會扭曲?
係愛因斯坦話既。所有物體有mass就會扭曲空間。mass越大, 曲度越大。

問2﹣空間扭曲時,行動中的物體便會因空間扭曲而改變行動中的方向,便是愛因斯坦的"引力“了?
愛因斯坦話, 行動中的物體並沒有因牛頓的萬有引力而改變方向, 祇不過係牛頓的萬有引力扭曲了空間, 而物體在扭曲了空間以最短距離前進, 第三者睇就好似改變了方向。其實在愛因斯坦定義的空間, 物體仍然以最短距離前進(即直線)。

問3﹣愛因斯坦的空間扭曲是否完全推反萬有引力?冇, 直程係話有萬有引力才有空間扭曲。

問4﹣地心吸力是,“空間扭曲引力“ 或是 "萬有引力“?
地心吸力即係萬有引力, 空間扭曲冇話係力, 衹不過話有力才可以扭曲空間。

我的回答, 夠精簡未?

2008-11-16 22:55:08 補充:
4維空間其實有不同定義, 愛因斯坦定時間ct為第四dimension, 祇不過為方便計算佢雙對論的空間。佢認為要睇得到才可定位置, 即係要有光到達對方才可判斷, 所以距離要加ct(光速x時間)。究竟佢既ct dimension 會唔會係第四個spatial dimension(Bernhard Riemann, 數學上)呢?而家未知。
2008-11-16 11:50 pm
問1﹣為何有物體靜止在3維空間時。空間便會扭曲?

This is described in Einstein's General Relativity as the interaction between mass and space-time. The result is the warpping of space-time.

問2﹣空間扭曲時,行動中的物體便會因空間扭曲而改變行動中的方向,便是愛因斯坦的"引力“了??

In the General Relativity, gravitation is demonstrated as a result of the warpping of space-time by a mass.

問3﹣愛因斯坦的空間扭曲是否完全推反萬有引力?

No. Be aware that Newton only discovered the Law of Universal Gravitation. His law tells us how to calculate the gravitational force between two masses within a certain degree of accuracy. Newton's Law is still valid today.

But Newton nor his law did not tell us the ORIGIN of gravitation. The General Relativity by Einstein only supplement such omission. Einstein's theory explains why there gravitation exists between two masses in terms of space warpping.


問4﹣地心吸力是,“空間扭曲引力“ 或是 "萬有引力“?

Space-time warpping is an EXPLANATION for the origin of gravitation.
The gravitational force of the earth is a result of space warpping due to the mass of the earth.
2008-11-16 5:15 am
3.4我以為愛因斯坦的空間理論便是在談 萬有引力與空間的關係。怎麼會是否定了 萬有引力。
只不過是以另一種觀點詮釋 而已。
我想愛因斯坦從未說過 在地面 提東西時,手不會酸。

或釦A可以想一想(不需要相對論) 手提東西不移動時 手會酸。
1.任何有質量物體的周遭都會發生空間的扭曲,只不過質量大的物體周遭空間扭曲的程度大質量小的物體周遭空間扭曲的程度小而已.
我們平時頭腦中的空間其實是三維的,而實際上空間的維度應該是四維,我們所在的世界存在的線應該是一維的空間而面是二維的空間,至於點我認為它是零維度的,它既可以無限大又可以無限小.
我們都知道黑洞的質量十分大即使連光也無法逃脫它的吸引,這是因為光是具有能量的而能量之間也會發生互相吸引,這樣在小質量物體的周遭也同樣會發生這種吸引的狀況,只是程度不同而已.

對於四維的空間也就是那個扭曲的空間我們一般人很難在頭腦之中形成一個具體化的形象,也許只有在超感知覺下才會形成,我們可以打一個比方當一個飛機在陽光的照耀下飛過一片崎嶇不平的山地時,在山地上會形成飛機留下的扭曲的影子,雖然它在三度空間是沿直線飛行,在二維的空間中它卻是沿曲線飛行的,在四維的空間重我們同樣可以來用這個比喻解釋,雖然四維空間是扭曲的,我們視線中的世界卻並沒有發生扭曲,因為我們的行為被束縛在同樣的原則下.
什麼是空間?

空間是物質大小及其方位的量度。這樣定義的空間有如下一些特點︰

1、因為我們量度的是物質,所以,從某種意義上講,空間是物質的。

2、由於物質從大的方面和小的方面都是無限的,我們從大和小的方面的量度也必須是無限的,因此,空間從大和小的方面也是無限的。

3、因為物質的量度是連續的,空間也是連續的。

4、沒有大小的點、沒有粗細的線和沒有濃薄的面在空間裡實際上是不存在的。

5、空間直角坐標系可以包容任何物質及其位置,而空間直角坐標系是三維的,因此空間是三維的。

5、空間是由實態和虛態組成的。我們把實態的空間範圍稱為“實空”,把虛態的空間範圍稱為“虛空”。實空是指該部分空間已被佔有或部分佔有,能阻礙其它東西進入。虛空即是該部分空間可以看成基本上未被佔有,對其它東西進入的阻礙可以忽略不計。

6、任何具體的物質都在不斷地運動,我們量度的總是運動的物質,空間是談不上運動的。絕對不動的空間──絕對空間是根本不存在的。

7、這樣定義的空間的量度方法是使用尺子來進行,一維、二維和三度空間的量綱分別是米、平方米和立方米。顯然它與時間沒有任何關係。

愛因斯坦的空間扭曲是否完全推反萬有引力?
參考: 天之心


收錄日期: 2021-04-19 12:49:26
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20081115000051KK01066

檢視 Wayback Machine 備份