✔ 最佳答案
1:
(1+x)n(1-2x)4
= (1 + nC1x + nC2x2 + .....)[1 - 4C1(2x) + 4C2(2x)2 - .....]
= (1 + nx + n(n-1)x2/2 + ......)(1 - 8x + 24x2 - ......)
= 1(1 - 8x + 24x2 + ......) + nx(1 - 8x + ......) + n(n-1)x2/2(1 + .....) + ......
= 1 - 8x + 24x2 + nx - 8nx2 + n(n-1)x2/2 + ......
= 1 + (n-8)x + [24 - 8n + n(n-1)/2]x2 + ......
= 1 + (n-8)x + [48 - 16n + n(n-1)]x2/2 + ......
= 1 + (n-8)x + [48 - 16n + n2 - n]x2/2 + ......
= 1 + (n-8)x + [n2 - 17n + 48]x2/2 + ......
Coefficient of x2:
[n2 - 17n + 48]/2 = 54
n2 - 17n + 48 = 108
n2 - 17n - 60 = 0
(n - 20)(n + 3) = 0
n = 20 ooro n = -3 (rejected)
Coefficient of x
= 20 - 8
= 12
======
2:
[x - (2/x)]6
= Σ6Crxr(2/x)6-r
The x2 term:
xr(1/x)6-r = x2
xr(x)-(6-r) = x2
r - (6 - r) = 2
r - 6 + r = 2
2r = 8
r = 4
When r = 4, the term:
= 6C4x4(2/x)6-4
= 15x4(2/x)2
= 15x4(4/x2)
= 60x2
The coefficient of x2 = 60
=====
3a:
(1+2x)n
= 1 + nC1(2x) + nC2(2x)2 + nC3(2x)3 + ......
= 1 + n(2x) + [n(n-1)/2](4x2) + [n(n-1)(n-2)/6](8x3) + ......
= 1 + 2nx + 2n(n-1)x2 + 4n(n-1)(n-2)x3/3 + ......
3b:
[x - (3/x)]2
= x2 - 2x(3/x) + (3/x)2
= x2 - 6 + (9/x2)
[x - (3/x)]2[1 + 2x]n
= [x2 - 2x(3/x) + (3/x)2][1 + 2nx + 2n(n-1)x2 + ......]
= [x2 - 6 + (9/x2)][1 + 2nx + 2n(n-1)x2 + ......]
= 1[x2 - 6 + (9/x2)] + 2nx[x2 - 6 + (9/x2)] + 2n(n-1)x2[x2 - 6 + (9/x2)] + ......
The constant term:
1(-6) + 2n(n-1)(9) = 210
-6 + 18n2 - 18n = 210
18n2 - 18n - 216 = 0
n2 - n - 12 = 0
(n - 4)(n + 3) = 0
n = 4 ooro n = -3 (rejected)
======
4:
[1 + 2x]7[2 - x]2
= [1 + 7C1(2x) + 7C2(2x)2 + ......](22 - 2(2)x + x2)
= [1 + 14x + 84x2 + ......](4 - 4x + x2)
= 1(4 - 4x + x2) + 14x(4 - 4x + x2) + 84x2(4 - 4x + x2) + ......
= 4 - 4x + x2 + 56x - 56x2 + 336x2 + ......
= 4 + 52x + 281x2 + ......
======
5:
[2x3 + (1/x)]8
= Σ6Cr(2x3)r(1/x)8-r
The constant term:
(x3)r(1/x)8-r = x0
x3rx-(8-r) = x0
x3r-(8-r) = x0
3r - (8 - r) = 0
3r - 8 + r = 0
r = 2
When r = 2, the term
= 6C2(2x3)2(1/x)8-2
= 15(4x6)(1/x)6
= 60
=