How to resolve this equation?

2008-11-09 1:37 pm
polynomials:
(x - 3)^2 + (x - 5)^2 = 17

回答 (3)

2008-11-09 1:43 pm
✔ 最佳答案
(x - 3)^2 + (x - 5)^2 = 17
x^2 - 6x + 9 + x^2 - 10x + 25 = 17
2x^2 - 16x + 34 = 17
2x^2 - 16x + 17 = 0
Using the quadratic formula, u will find x to be 1.26 and 6.74
2008-11-09 10:41 pm
(x - 3)^2 + (x - 5)^2 = 17
(x - 3)(x - 3) + (x - 5)(x - 5) = 17
x*x - 3*x - x*3 + 3*3 + x*x - 5*x - x*5 + 5*5 = 17
x^2 - 3x - 3x + 9 + x^2 - 5x - 5x + 25 = 17
x^2 - 6x + 9 + x^2 - 10x + 25 = 17
x^2 + x^2 - 6x - 10x + 9 + 25 - 17 = 0
2x^2 - 16x + 17 = 0
x = [-b ±√(b^2 - 4ac)]/2a

a = 2
b = -16
c = 17

x = [16 ±√(256 - 136)]/4
x = [16 ±√120]/4
x = [16 ±√(2^2 * 2 * 3 * 5)]/4
x = [16 ±2√(2 * 3 * 5)]/4
x = [16 ±2√30]/4
x = [8 ±√30]/2
x = 4 ±(√30)/2

∴ x = 4 ±(√30)/2
2008-11-09 9:46 pm
(x - 3)^2 + (x - 5)^2 = 17........Just expand and simplify -

x^2 - 6x + 9 + x^2 - 10x + 25 = 17

2x^2 -16x + 17 = 0........ As this does not have factors, use the quadratic equation to get the roots, which are:

x = 6.74 and x = 1.26


收錄日期: 2021-05-01 11:29:23
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20081109053702AAEpL1j

檢視 Wayback Machine 備份