M.I question....

2008-11-06 5:55 am
prove by mathematical induction, that
1+2*3+3*3^2+4*3^3+...+n(3^n-1)=1/4(1+(2n-1)3^n) for all positive integers n

回答 (3)

2008-11-06 7:43 am
✔ 最佳答案
When n = 1,
RHS = 1/4(1+(2*1-1)*3^1) = 1 = LHS
The proposition is true for n = 1.

Assume it is true for n = k,
ie. 1+2*3+3*3^2+4*3^3+...+k(3^<k-1>)=1/4[1+(2k-1)3^k] for all positive integers k.

So we are going to prove LHS = RHS for n = k+1.
(Remark: we are going to prove LHS = 1/4{1+[2(k+1)-1]*3^<k+1>})
LHS
= 1+2*3+3*3^2+4*3^3+...+k(3^<k-1>)+(k+1)*3^k
= 1/4[1+(2k-1)*3^k]+(k+1)*3^k (by assumption)
= 1/4[1+(2k-1)*3^k+(4k+4)*3^k]
= 1/4[1+(6k+3)*3^k]
= 1/4{1+[6(k+1)-3]*3^k}
= 1/4{1+[2(k+1)-1]*3^<k+1>}
= RHS

By the first principle of mathematical induction,
it is true for all positive integers n.
參考: 自己
2008-11-07 3:04 pm
2008-11-06 7:08 am
有冇打錯野


收錄日期: 2021-04-23 20:40:18
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20081105000051KK01891

檢視 Wayback Machine 備份