Evaluate limits

2008-11-05 3:42 am
lim x--> infinity

x^(2/3) * ((x+3)^(1/3)-x^(1/3))

回答 (1)

2008-11-05 4:01 am
✔ 最佳答案
Let A=(x+3)^(1/3) and B=x^(1/3)
then A-B=(A^3-B^3)/(A^2+AB+B^2)
=[(x+3)-x][(x+3)^(2/3)+(x^2+3x)^(1/3)+x^(2/3)]
=3/[(x+3)^(2/3)+(x^2+3x)^(1/3)+x^(2/3)]

lim x^(2/3)*(A-B)
=lim 3x^(2/3)/[(x+3)^(2/3)+(x^2+3x)^(1/3)+x^(2/3)]
=lim 3/[(1+3/x)^(2/3)+(1+3/x)^(1/3)+1]
=3/[1+1+1]
=1

Remark. I let A,B here is just easy for you to read, when you do it yourself, you may evaluate it directly.
參考: ME


收錄日期: 2021-04-19 12:47:53
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20081104000051KK01439

檢視 Wayback Machine 備份