✔ 最佳答案
1. Ratio test
計算如下:
a(n)=(2n+1)*(1/2)^(2n+1)*C(2n, n)/(n+1)
a(n-1)=(2n-1)*(1/2)^(2n-1)*C(2n-2, n-1)/n
=>a(n)/a(n-1)=(2n+1)/(2n+2) --> 1 (Ratio test 失效)
2. Rabbe's test
續Ratio test ( r=1 case)
Rabbe test:
Suppose a(n)>0, a(n)/a(n-1)=1 - c/n + f(n)/n ( f(n)->0 )
If c>1 then Σa(n) conv.
if c<1 then Σa(n) div.
本題: a(n)/a(n-1)= (2n+1)/(2n+2)= 1 - 0.5/n + f(n)/n, where f(n)=1/(2n+2)
=> c= 0.5 < 1 故本題級數 div.
2008-11-04 01:45:24 補充:
1. Copestone果然不世出之高手,連源頭Kummer's test都找出來了
2. 本來想用Gauss's test (比Rabbe's 強些), 但不好寫,故作罷! Kummer's 更難寫吧!?
2008-11-04 01:55:05 補充:
謝謝Copestone的更正: 是Raabe's test 不是Rabbe's
真不知Copestone眼力怎這麼利!
2008-11-04 02:07:39 補充:
Copestone的提點:
本題a(n)與
http://tw.knowledge.yahoo.com/question/question?qid=1608110110262
結果很像, 亦可由該處知本級數發散
2008-11-04 02:10:01 補充:
去念點generating fn 吧!
我也來考一題.