同月同日生概率

2008-11-03 6:59 pm
若果根據以下兩題的資料:
http://hk.knowledge.yahoo.com/question/question?qid=7008051902660
http://hk.knowledge.yahoo.com/question/question?qid=7008102200187
現時有 n 人, 則當中至少兩人於同月同日生的機會為多少?
註: 肯定不會是 1 - [364/365 x 363/365 x ... (366 - n)/365]
更新1:

doraemonpaul 君, 感謝你的提示: 應該係問「在n人當中至少兩人於同月同日慶祝生日的概率」, 即跟返在你之前發問的兩題當中的規則.

回答 (3)

2008-11-18 7:41 am
✔ 最佳答案
究竟你是想問「在n人當中至少兩人於同月同日出生的概率」還是想問「在n人當中至少兩人於同月同日慶祝生日的概率」?

2008-11-17 23:41:24 補充:
First consider the case in leap year (閏年):

In leap year, the persons celebrate their birthday at the same day is equivalent to the persons born on the same day. So we can use the method in http://www.efgh.com/math/birthday.htm.

圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday00.jpg

By using the information in http://hk.knowledge.yahoo.com/question/question?qid=7008051902660,


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday01.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday02.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday03.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday04.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday05.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday06.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday07.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday08.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday09.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday10.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday11.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday12.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday13.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday14.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday15.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday16.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday17.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday18.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday19.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday20.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday21.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday22.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday23.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday24.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday25.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday26.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday27.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday28.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday29.jpg


圖片參考:http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/crazybirthday/crazybirthday30.jpg


參考資料:
method from隨http://zh.wikipedia.org/w/index.php?title=%E7%94%9F%E6%97%A5%E6%82%96%E8%AB%96&variant=zh-hk附送的網站http://www.efgh.com/math/birthday.htm + notation referenced from隨http://zh.wikipedia.org/w/index.php?title=%E7%94%9F%E6%97%A5%E6%82%96%E8%AB%96&variant=zh-hk附送的網站http://mathworld.wolfram.com/BirthdayProblem.html + my wisdom of maths + http://en.wikipedia.org/wiki/Gamma_function
2008-11-18 5:33 am
根據
http://hk.knowledge.yahoo.com/question/question?qid=7008051902660
http://hk.knowledge.yahoo.com/question/question?qid=7008102200187

現時有 n 人, 則當中至少兩人於同月同日生的機會為多少?(n是任何不包括1的自然數)


我認為是:
58468191/146097^n x 1/(400 x 146097^n) x [364 x 400^n 1 303 x 497^n 97 x (400^n 97^n)]



如錯了,請指教。
2008-11-10 4:03 am
doraemonpaul 君, 感謝你的提示:
應該係問「在n人當中至少兩人於同月同日慶祝生日的概率」, 即跟返在你之前發問的兩題當中的規則.


收錄日期: 2021-04-25 17:28:53
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20081103000051KK00430

檢視 Wayback Machine 備份