f.4 mathz...

2008-10-19 9:12 pm
It is given that f(x) = ax^2 + 2x + 1 and g(x) = x^2 + 3x.

a) If f(-2)=1, find the value of a.

b) If h(x)=g(x-1), find h(x) in terms of x.

c) Solve the equation f(x)=h(x)+2.

回答 (5)

2008-10-19 9:38 pm
✔ 最佳答案
It is given that f(x) = ax^2 + 2x + 1 and g(x) = x^2 + 3x.

a) If f(-2)=1, find the value of a.
f(-2) = 1 and f(x) = ax^2 + 2x + 1
then:
a(-2)^2 + 2(-2) + 1 = 1
4a – 4 + 1 + 3 = 1 + 3
4a ÷ 4 = 4 ÷ 4
a = 1


b) If h(x)=g(x-1), find h(x) in terms of x.
Since h(x)=g(x-1) and g(x) = x^2 + 3x
then:
h(x) = (x – 1)^2 + 3(x – 1)
= (x - 1)(x – 1 + 3)
= (x – 1)(x + 2)
= x^2 + x – 2


c) Solve the equation f(x)=h(x)+2.
Since f(x) = ax^2 + 2x + 1、h(x) = x^2 + x – 2 and a =1
then:
x^2 + 2x + 1 = x^2 + x – 2
x^2 – x^2 + 2x – x + 1 + 2 = x^2 – x^2 + x – x – 2 + 2
x + 3 – 3 = 0 – 3
x = -3

希望能幫到你,如仍有疑問,請給我電郵,大家交個朋友吧!

2008-10-19 13:42:00 補充:
對不起, c)部份睇漏了[ +2 ], 現更正c)部份:

c) Solve the equation f(x)=h(x)+2.
Since f(x) = ax^2 + 2x + 1、h(x) = x^2 + x – 2 and a =1
then:
x^2 + 2x + 1 = (x^2 + x – 2) + 2
x^2 – x^2 + 2x – x + 1 + 2 = x^2 – x^2 + x – x – 2 + 2 + 2
x + 3 – 3 = 2 – 3
x = -1
參考: 隨緣一想
2008-10-20 5:17 am
(a)
f(-2) = a(-2)^2 +2(-2)+1 = 1
4a -3 = 1
4a = 4
a = 1
(b) h(x) = g(x-1)
= (x-1)^2 +3(x-1)
= x^2 +x -2
(c) f(x) = h(x) + 2
f(x) = x^2 + 2x+1 = h(x) + 2 = x^2 + x - 2 + 2
x^2 + 2x + 1 = x^2 + x
x + 1 = 0
x = -1
參考: me
2008-10-19 9:40 pm
a)
1= a(-2)^2 +2(-2) +1 (because(x)=(-2) so -2=x)
1=4a -4 +1
1=4a -3
4a=4
a=1
b)
h(x)=(x-1)^2 +3(x-1)
h(x)=x^2 -2x +1 +3x -3
h(x)=x^2 +x -2

c)
x^2 +2x +1=x^2 +x -2 +2
2x+1=x
x=-1
參考: 自己 唔明再問^^
2008-10-19 9:31 pm
a)
f(-2) = a(-2)^2 + 2(-2) + 1 = 1
4a-4 = 0
a = 1

b)
h(x)=g(x-1)
h(x) = (x-1)^2 + 3(x-1)
h(x) = x^2 + x - 2

c)
f(x)=h(x)+2
x^2 + 2x + 1 = (x^2 + x - 2) + 2
x = -1
2008-10-19 9:31 pm
(a)
f(-2) = a(-2)^2 +2(-2)+1 = 1
4a -3 = 1
4a = 4
a = 1
(b) h(x) = g(x-1)
= (x-1)^2 +3(x-1)
= x^2 +x -2
(c) f(x) = h(x) + 2
f(x) = x^2 + 2x+1 = h(x) + 2 = x^2 + x - 2 + 2
x^2 + 2x + 1 = x^2 + x
x + 1 = 0
x = -1


收錄日期: 2021-04-13 16:10:23
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20081019000051KK00985

檢視 Wayback Machine 備份