✔ 最佳答案
It is given that f(x) = ax^2 + 2x + 1 and g(x) = x^2 + 3x.
a) If f(-2)=1, find the value of a.
f(-2) = 1 and f(x) = ax^2 + 2x + 1
then:
a(-2)^2 + 2(-2) + 1 = 1
4a – 4 + 1 + 3 = 1 + 3
4a ÷ 4 = 4 ÷ 4
a = 1
b) If h(x)=g(x-1), find h(x) in terms of x.
Since h(x)=g(x-1) and g(x) = x^2 + 3x
then:
h(x) = (x – 1)^2 + 3(x – 1)
= (x - 1)(x – 1 + 3)
= (x – 1)(x + 2)
= x^2 + x – 2
c) Solve the equation f(x)=h(x)+2.
Since f(x) = ax^2 + 2x + 1、h(x) = x^2 + x – 2 and a =1
then:
x^2 + 2x + 1 = x^2 + x – 2
x^2 – x^2 + 2x – x + 1 + 2 = x^2 – x^2 + x – x – 2 + 2
x + 3 – 3 = 0 – 3
x = -3
希望能幫到你,如仍有疑問,請給我電郵,大家交個朋友吧!
2008-10-19 13:42:00 補充:
對不起, c)部份睇漏了[ +2 ], 現更正c)部份:
c) Solve the equation f(x)=h(x)+2.
Since f(x) = ax^2 + 2x + 1、h(x) = x^2 + x – 2 and a =1
then:
x^2 + 2x + 1 = (x^2 + x – 2) + 2
x^2 – x^2 + 2x – x + 1 + 2 = x^2 – x^2 + x – x – 2 + 2 + 2
x + 3 – 3 = 2 – 3
x = -1