1)3+3²+3³+...+3^n=3/2(3^n-1)
2)1‧4+2‧7+3‧10‧+...+n(3n+1)=n(n+1)²
3)1²+3²+5²+...+(2n-1)²=n(4n²-1)/3
4)1‧2‧3‧+2‧3‧4‧+3‧4‧5‧+...+n(n+1)(n-2)
=1/4n(n+1)(n+2)(n+3)
5)3/4 + 5/36 + 7/144 + 2n+1/n²(n+1)² = 1 - 1/(n+1)²
6)1/1 x 2 + 1/2 x 3 + ...+ 1/n(n+1) = n/n+1
7)1/1 x 4 + 1/4 x 7 + 1/7 x 10 +...+ 1/(3n-2)(3n+1)
=n/3n+1
Prove,by mathematical induction,that the following propositions are true for all natural numbers n.
8)1/ 2‧5‧8 + 1/ 5‧8‧11 + 1/ 8‧11‧14 +...+ 1/ (3n-1)(3v+2)(3n+5)=1/60 - 1/ 6(3n+2)(3n+5)
更新1:
如果嫌長的話...可以由"When n=k+1"開始寫solution,,,thanks!!!