proving 問題

2008-10-08 8:00 pm
prove
sin^2 a tan a + cos^2 a cot a + 2 sin a cos a = tan a + cot a
但我的做法是
sin^2 a . sin a / cos a + cos^2 a . cos a / sin a + 2 sin a cos a
= sin^3 a / cos a + cos^3 a / sin a + 2 sin a cos a
= (sin^4 a + cos^4 a + 2 sin^2 a cos^2 a) / sin a cos a
= (sin^2 a + cos^2 a)^2 / sin a cos a
= 1/ sin a cos a
= cosec a . sec a
跟RHS 不相同 我的計法有錯還是問題發錯呢= =...
更新1:

多謝uncle michal *_* 原來可以由cot a + tan a 變 cosec a . sec a 唔怪得我諗極都諗唔到-.-....

回答 (2)

2008-10-08 8:34 pm
✔ 最佳答案

L.H.S.
= sin2a tan a + cos2a cot a + 2 sin a cos a
= ............
= cosec a sec a


R.H.S.
= tan a + cot a
= (sin a/cos a) + (cos a/sin a)
= (sin2a + cos2a)/(sin a cos a)
= 1/(sin a cos a)
= cosec a sec a

Hence, L.H.S. = R.H.S.
=

2008-10-08 12:42:38 補充:
An alternative method:

L.H.S.
= .....
= 1 / (sin a cos a)
= (sin^2 a + cos^2 a) / (sin a cos a)
= (sin a/cos a) + (cos a/sin a)
= tan a + cot a
= R.H.S.
2008-10-09 3:21 am
sin^2 a tan a + cos^2 a cot a + 2 sin a cos a = tan a + cot a

LHS = sin^2 a tan a + cos^2 a cot a + 2 sin a cos a
= sin^2 a tan a + cos^2 a cot a + sin a cos a + sin a cos a
= sina ( sina tana + cos a ) + cos a ( sina + cot a cos a)
= sina ( sina tana + sina / tana ) + cosa( cosa tana + cota cos a )
= sin^2a ( tan^2 a + 1) / tana + cos^a (tan^2 a + 1 ) /tana
= (tan^a + 1 ) /tana ( sin^2 a + cos^2 a )
= (tan^a + 1 )/tana
= tana + cota = RHS

2008-10-08 19:25:17 補充:
我還有一個威力驚人的方法:
LHS = sin^2 a tan a + cos^2 a cot a + 2 sin a cos a
= sin^2 a tan a + cos^2 a cot a + 2 sin a cos a - tan a - cot a + tan a + cot a
= tana ( sin^2 a - 1) + cota (cos^2 a - 1) + 2sinacosa + tan a + cot a

2008-10-08 19:25:27 補充:
= - tana cos^2 a - cota sin^2 a + 2sina cosa + tan a + cot a
= - sina cosa - sinacosa + 2sina cosa + tana + cota
= tana + cota


收錄日期: 2021-04-23 23:05:23
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20081008000051KK00594

檢視 Wayback Machine 備份