x^2+2x+A>0

2008-10-06 1:31 am
x^2+2x+A>0

點做AR,.???

回答 (2)

2008-10-06 6:48 am
✔ 最佳答案
△<0
4-4A<0
A>1

so x^2-2x+A>0 if A>1
參考: me
2008-10-06 3:19 am
Prove x^2+2x+A>0, this can be proved only when the value of A>0
Assume that is,
Let y=x^2+2x+A
y=(x+1)^2-(1-A)
Assume A gets minimum value 1
y=(x+1)^2>0
Assume A gets a much larger number, such as 50
y=(x+1)^2-(1-50)
y=(x+1)^2+49>0
If A is not >0 ,
Delta=(2)^2-4(1)(A)
=4(1-A)>0,The curve must have parts that is negative
Thus x^2+2x+A>0 cannot be proved


收錄日期: 2021-04-22 00:15:48
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20081005000051KK01932

檢視 Wayback Machine 備份