✔ 最佳答案
Theories of spacesuit design
A space suit should allow its user natural unencumbered movement. Nearly all designs try to maintain a constant volume no matter what movements the wearer makes. This is because mechanical work is needed to change the volume of a constant pressure system. If flexing a joint reduces the volume of the spacesuit, then the astronaut must do extra work every time he bends that joint, and he has to maintain a force to keep the joint bent. Even if this force is very small, it can be seriously fatiguing to constantly fight against your suit. It also makes delicate movements very difficult. The work required to bend a joint is dictated by the formula
where Vi and Vf are respectively the initial and final volume of the joint, P is the pressure in the suit, and W is the resultant work. Because pressure is dictated by life support requirements, the only means of reducing work is to minimize the change in volume.
All space suit designs try to minimize or eliminate this problem. The most common solution is to form the suit out of multiple layers. The bladder layer is a rubbery, airtight layer much like a balloon. The restraint layer goes outside the bladder, and provides a specific shape for the suit. Since the bladder layer is larger than the restraint layer, the restraint takes all of the stresses caused by the pressure inside the suit. Since the bladder is not under pressure, it will not "pop" like a balloon, even if punctured. The restraint layer is shaped in such a way that bending a joint causes pockets of fabric, called "gores", to open up on the outside of the joint, while folds called "convolutes" fold up on the inside of the joint. The gores make up for the volume lost on the inside of the joint, and keep the suit at a nearly constant volume. However, once the gores are opened all the way, the joint cannot be bent any further without a considerable amount of work.