My solution:
A=pi/4(D^2-d^2)
(〥A)/A=(2〥D)/D+(2〥d)/d
(〥A)/Ax100%=[2(2/64)+2(1/47)]x100%
So, the %error=10.5%
But the answer:
A=pi/4(D^2-d^2)=pi/4(D-d)(D+d)
(〥A)/Ax100%=±[〥(D+d)/(D+d)+〥(D-d)(D-d)]x100%
(〥A)/Ax100%=±[3/(64+47)+3/(64-47)]x100%
(〥A)/Ax100%=±20%
What's wrong I have made?
更新1:
D^2-d^2 =(D+d)(D-d) =D^2+Dd-Dd+d^2 From D^2-d^2 (2〥D)/D+2(〥d)/d =2[(〥D)/D+(〥d)/d] From D^2+Dd-Dd+d^2, (2〥D)/D+(〥D)/d+(〥d)/d+(〥D)/d+(〥d)/d+(2〥d)/d =4[(〥D)/D+(〥d)/d] Why are't they equal?