what is 光

2008-09-18 2:37 am
問題 :what is 光

回答 (3)

2008-09-18 4:23 am
✔ 最佳答案
光是一種人類眼睛可以見的電磁波波長(可見光)。在科學上的定義,光有時候是指所有的電磁波譜。光是由一種稱為光子的基本粒子組成。具有粒子性與波動性,或稱為波粒二象性。

微粒說:
1638年,法國數學家皮埃爾·伽森荻(Pierre Gassendi)提出物體是由大量堅硬粒子組成的。並在1660年出版的他所著的書中涉及到了他對於光的觀點。他認為光也是有大量堅硬粒子組成的。

牛頓隨後對於伽森荻的這種觀點進行研究,他根據光的直線傳播規律、光的偏振現象,最終於1675年提出假設,認為光是從光源發出的一種物質微粒,在均勻媒質中以一定的速度傳播。

微粒說很容易解釋光的直進性,也很容易解釋光的反射,因為粒子與光滑平面發生碰撞的反射定律與光的反射定律相同。然而微粒說在解釋一束光射到兩種介質分界面處會同時反射和折射,以及幾束光交叉相遇後彼此毫不妨礙的繼續向前傳播等現象時,卻發生了很大困難。

光子說:
光的電磁說使光的波動理論發展到相當完美的地步。但是,還是在赫茲用實驗證實光的電磁說的時候,就已經發現了光電效應這一現象。而這一發現也使光的電磁說遇到了無法克服的困難。1905年愛因斯坦提出光量子論,運用光子的概念解釋了光電效應。

光的特性:

光的直進性:
光在均勻的介質中沿直線傳播,簡言之光是直線運行的。

光的折射:
光從不同密度的介質穿過時發生的偏折現象為折射,不同介質可以製造出不同角度的折射。光線遇另一介質反射的情況 反射是指入射光反回原介質的情形 ,反射定律可以下列三原則來解釋:
1.入射線、反射線與法線同一平面。
2.入射線與反射線在法線的兩側。
3.入射角等於反射角。

光的全內反射:
當光線由密度較高的介質(光密)到密度較低的介質(光疏)且入射角大於臨界(sini = 1 / n)(n為折射率)時,全內反射發生,沒有折射光線

光徑的可逆性:
在干涉與繞射可忽略的情況中,入射光線與反射光線的可交換性。就是在一條光徑的終點,發出反方向的光,此光可沿原路徑回到原來的起點。在介質分界面處應用光路的可逆性可導出關於反射率和折射率的斯托克斯關係。

光的干涉:
干涉現象是波的一種特性。惠更斯1678年提出光是一種波動後,由於得到兩列相干光源很不容易,所以波動說很長時間內沒有被證明認可。直到1801年,才由英國物理學家托馬斯·楊巧妙而簡單的解決了相干光源的問題。

光電效應:
一種光游離作用(光子將電子撞出原子,使之游離的過程),最常見的應用是以光束完成電流通路的電眼系統。

光源:
光是能量的一種傳播方式。光源所以發出光,是因為光源中原子的運動。有三種方式:熱運動;躍遷幅射;受激幅射。前者為生活中最常見的,比如電燈和火焰;後者多應用於激光。

光譜:
在光的產生過程中,因為躍遷能級的不同,釋放出不同頻率的光子(愛因斯坦能量方程)。而不同頻率的光會有着不同的顏色。可見光範圍內依次為赤橙黃綠藍靛紫。白光為所有這些光譜的綜合。如果用稜鏡折射白光,就能夠觀察到上述可見光光譜。
既複色光(如白光)被色散系統(如稜鏡)分類後,按波長的大小依次排列的圖案。
後來,對光譜的研究就成了一門專業學科——光譜學。人們利用光譜來研究發光物體的性質。在現代,光譜學在宇宙的研究方面起着重要的作用。

光線:
光是直線傳播的。基於光線的光學,稱為幾何光學或線性光學(Beam Optics)。
2008-09-18 4:43 am
關於光的本性問題很早就引起了人們的關注。



早期的學說

2400多年前,中國的墨翟及其弟子所著的《墨經》一書中記載了光的直線傳播、影子的形成、光的反射、平面鏡成像等光現象,是世界上最早的光學理論。



微粒說

1638年,法國數學家皮埃爾·伽森荻(Pierre Gassendi)提出物體是由大量堅硬粒子組成的。併在1660年出版的他所著的書中涉及到了他對於光的觀點。他認為光也是有大量堅硬粒子組成的。



牛頓隨後對於伽森荻的這種觀點進行研究,他根據光的直線傳播規律、光的偏振現象,最終於1675年提出假設,認為光是從光源發出的一種物質微粒,在均勻媒質中以一定的速度傳播。



微粒說很容易解釋光的直進性,也很容易解釋光的反射,因為粒子與光滑平面發生碰撞的反射定律與光的反射定律相同。然而微粒說在解釋一束光射到兩種介質分界面處會同時反射和折射,以及幾束光交叉相遇後彼此毫不妨礙的繼續向前傳播等現象時,卻發生了很大困難。



波動說

胡克(Robert Hooke)在1685年發表的《顯微術》一書中,認為光是一種振動,發光體的每一振動在介質中向各個方向傳播。胡克初步建立了波面和波線的概念,並把波面的思想用於對光的折射和薄膜顏色的研究。



惠更斯(Christian Huygens)著《論光》更明確地提出了光是一種波動的主張,他認為光是一種介質的運動,該運動從介質的一部分以有限速度依次地向其他部分傳播,他把光的傳播方式與聲音在空氣中的傳播作比較。



波動說很容易能夠解釋微粒說不能解釋的兩個問題。水波可以同時發生反射和折射,並且水波的反射和折射規律和光完全相同。湖面上的激烈水波能夠自由的互相穿過,通過一個窗口能夠同時聽到窗外幾個人講話的聲音,這些都是人們熟知的波的現象。然而,早期的波動說缺乏定量的數學嚴密性,也缺乏對波動特性的足夠說明,仍然擺脫不了幾何光學的觀念。同時,惠更斯所提出的波動說是把光比作像「水波」一樣的機械波,即機械波的傳播需要依靠介質,而光卻能在真空中(即無介質)傳播。



牛頓並不是根本不承認光的波動性,事實上正是牛頓首先提出了光在本質上是一種周期過程的觀點,他還多次提到光可能是一種振動並與聲波作對比。然而從他的著作《光學》的其他部分來看,他還是傾向於光的微粒說。突出的例子是從光的微粒說出發,根據機械粒子遵守的力學規律來解釋光的反射定律和折射定律,並得出了光密介質中的光速要大於光疏介質中的光速這一與事實不符的結論。



英國物理學家托馬斯·楊(1773年 – 1829年用干涉實驗證明了光的波動性由於牛頓在學術界有很高的聲望,致使微粒說在其後的100多年裡一直占著主導地位,而波動說卻發展得很慢。同時,如果要證明光具有波動性,必須設法顯示出光具有干涉現象,而干涉現象的產生必須得到兩列相干光。畢竟得到兩列相干光對於當時是相當困難的。直到1801年英國物理學家托馬斯·楊(Thomas Young)終於用干涉實驗證明了光的波動性。



電磁說

參考: me
2008-09-18 2:42 am
光的科学解释
[编辑本段]

可以激发视网膜产生视觉能力之辐射能;电磁波之可见光谱范围为380~770nm(10-9m)
光分为人造光和自然光。我们之所以能够看到客观世界中斑驳陆离、瞬息万变的景象,是因为眼睛接收物体发射、反射或散射的光。光与人类生活和社会实践有着密切的关系。

光源:能自身发光的物体称为光源。光源分冷光源和热光源;
冷光源:指发光不发热(或发很低温度的热)。如萤火虫等;热光源:指发光发热(必须是发高温度的热)。如太阳等;

严格地说,光是人类眼睛所能观察到的一种辐射。有实验证明光就是电磁辐射,这部分电磁波的波长范围约在红光的0.77微米到紫光的0.39微米之间。波长在0.77微米以上到1000微米左右的电磁波称为“红外线”。在0.39微米以下到0.04微米左右的称“紫外线”。红外线和紫外线不能引起视觉,但可以用光学仪器或摄影方法去量度和探测这种发光物体的存在。所以在光学中光的概念也可以延伸到红外线和紫外线领域,甚至X射线均被认为是光,而可见光的光谱只是电磁光谱中的一部分。

光具有波粒二象性,即既可把光看作是一种频率很高的电磁波,也可把光看成是一个粒子,即光量子,简称光子。

光速取代了保存在巴黎国际计量局的铂制米原器被选作定义“米”的标准,并且约定光速严格等于299,792,458米/秒,此数值与当时的米的定义和秒的定义一致。后来,随着实验精度的不断提高,光速的数值有所改变,米被定义为1/299,792,458秒内光通过的路程。

光是地球生命的来源之一。

光是人类生活的依据。光是人类认识外部世界的工具。光是信息的理想载体或传播媒质。

据统计,人类感官收到外部世界的总信息中,至少90%以上通过眼睛……

光就其本质而言是一种电磁波,覆盖着电磁频谱一个相当宽(从X射线到远红外)的范围,只是波长比普通无线电波更短。人类肉眼所能看到的可见光只是整个电磁波谱的一部分。

当一束光投射到物体上时,会发生反射、折射、干涉以及衍射等现象。

光线在均匀同等介质中沿直线传播。

光波,包括红外线,它们的波长比微波更短,频率更高,因此,从电通信中的微波通信向光通信方向发展,是一种自然的也是一种必然的趋势。

普通光:一般情况下,光由许多光子组成,在荧光(普通的太阳光、灯光、烛光等)中,光子与光子之间,毫无关联,即波长不一样、相位不一样,偏振方向不一样、传播方向不一样,就象是一支无组织、无纪律的光子部队,各光子都是散兵游勇,不能做到行动一致。

光反射时,反射角等于入射角,在同一平面,位于法线两边,且光路可逆行。

光线从一种介质斜射入另一种介质中,会产生折射。如果射入的介质密度大于原本光线所在介质密度,则入射角小于折射角。反之,若小于,则入射角大于折射角。但入射角为0,则无论如何,折射角为零,不产生折射。但光折射还在同种不均匀介质中产生,理论上可以从一个方向射入不产生折射,但因为分不清界线且一般分好几个层次又不是平面,故无论如何看都会产生折射。如从在岸上看平静的湖水的底部属于第一种折射,但看见海市蜃楼属于第二种折射。凸透镜凹透镜这两种常见镜片所产生效果就是因为第一种折射。

激光——光学的新天地

激光光束中,所有光子都是相互关联的,即它们的频率(或波长)一致、相位一致、偏振方向一致、传播方向一致。激光就好像是一支纪律严明的光子部队,行动一致,因而有着极强的战斗力。这就是为什么许多事情激光能做,而阳光、灯光、烛光不能做的主要原因。


收錄日期: 2021-04-13 16:04:52
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080917000051KK01450

檢視 Wayback Machine 備份