✔ 最佳答案
Let width of window = 2y, height of rectangular part of window = x.
Therefore, perimeter of window = 2py + 2y + 2x = 30..........(1).
Area of window, A = 2xy + py^2/2 where p = pi ................(2)
from (1) x = 15 - (1+p)y. Sub into (2), we get
A = 2y[15 -(1+p)y] + py^2 = 15y - 2py^2 - 2y^2 + py^2 =15y - 2y^2 -py^2.
dA/dy = 15 - 4y - 2py = 15 - 2(2 + p)y.
Put it to zero, we get y = 15/{2(2 +p)}, so width = 2y = 15/(2+p).
So x = 15 -15 (1+p)/[2(2 +p)] = (60 + 30p - 15 - 15p)/[2(1+p)] = (45+ 15p)/[2(2 +p)] = 15(3 + p)/[2(2 +p)].