中4,a-maths問題...

2008-09-07 3:22 am
呢條唔識做...

利用數學歸納法,證明對於所有正正數n,下列各命題都成立!

1.4+2.7+3.10+....+n(3n+1)=n(n+
1)^2

呢課係數學歸納法

做得詳細d,,十萬個唔該晒!!

回答 (3)

2008-09-07 4:54 pm
2008-09-07 3:47 am
對於所有正正數n :1.4+2.7+3.10+....+n(3n+1)=n(n+
1)^2


設P(n)為這個命題"1.4+2.7+3.10+....+n(3n+1)=n(n+
1)^2"

當n=1

左方=(3+1) 右方=(1+1)^2
=4 =4

∵左方=右方
∴p(1)成立

設p(k)成立,K是正整數

即1.4+2.7+3.10+....+k(3k+1)=k(k+
1)^2


當n=k+1

左方=.4+2.7+3.10+....+k(3k+1)+(k+1)(3k+4)

=k(k+1)^2+(k+1)(3k+4)
=(k+1)[k(k+1)+(3k+4)]
=(k+1)(k^2+k+3k+4)
=(k+1)(K^2+4K+4)
=(k+1)(k+2)^2

右方=(k+1)(k+2)^2



∵p(k)成立,則p(k+1)都成立
根據數學歸納法,
對於所有正整數n"1.4+2.7+3.10+....+n(3n+1)=n(n+
1)^2"

P(n)成立
參考: 自己
2008-09-07 3:43 am
Assume 1*4+2*7+3*10+...+k(3k+1)=k(k+1)^2 , where k is a positive integer

Consider when n=k+1
1*4+2*7+...+k(3k+1)+(k+1)(3k+4)
=k(k+1)^2+(3k+4)(k+1)
=(k+1)[k(k+1)+(3k+4)]
=(k+1)(k^2+4k+4)
=(k+1)(k+2)^2//

So it is true for n=k+1
By Mathematical Induction , it is true for all positive integer n.



收錄日期: 2021-04-23 20:34:48
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080906000051KK02318

檢視 Wayback Machine 備份