中4,a-maths問題...
呢條唔識做...
利用數學歸納法,證明對於所有正正數n,下列各命題都成立!
1.4+2.7+3.10+....+n(3n+1)=n(n+
1)^2
呢課係數學歸納法
做得詳細d,,十萬個唔該晒!!
回答 (3)
對於所有正正數n :1.4+2.7+3.10+....+n(3n+1)=n(n+
1)^2
設P(n)為這個命題"1.4+2.7+3.10+....+n(3n+1)=n(n+
1)^2"
當n=1
左方=(3+1) 右方=(1+1)^2
=4 =4
∵左方=右方
∴p(1)成立
設p(k)成立,K是正整數
即1.4+2.7+3.10+....+k(3k+1)=k(k+
1)^2
當n=k+1
左方=.4+2.7+3.10+....+k(3k+1)+(k+1)(3k+4)
=k(k+1)^2+(k+1)(3k+4)
=(k+1)[k(k+1)+(3k+4)]
=(k+1)(k^2+k+3k+4)
=(k+1)(K^2+4K+4)
=(k+1)(k+2)^2
右方=(k+1)(k+2)^2
∵p(k)成立,則p(k+1)都成立
根據數學歸納法,
對於所有正整數n"1.4+2.7+3.10+....+n(3n+1)=n(n+
1)^2"
P(n)成立
參考: 自己
Assume 1*4+2*7+3*10+...+k(3k+1)=k(k+1)^2 , where k is a positive integer
Consider when n=k+1
1*4+2*7+...+k(3k+1)+(k+1)(3k+4)
=k(k+1)^2+(3k+4)(k+1)
=(k+1)[k(k+1)+(3k+4)]
=(k+1)(k^2+4k+4)
=(k+1)(k+2)^2//
So it is true for n=k+1
By Mathematical Induction , it is true for all positive integer n.
收錄日期: 2021-04-23 20:34:48
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080906000051KK02318
檢視 Wayback Machine 備份