Find what values of k which the equation k^2+(k-3)x+1 has no or just one real root
我的見解:
k^2+(k-3)x+1細過等於0
由於k^2+(k-3)x+1細過等於0 a>0 open upward and has real root
所以 判別式會係大過等於0
(k-3)^2 - 4k 大過等於0
k^2-6k+9-4k大過等於0
k大過等於9 or k細過等於1
我呢個ans係同答案一樣的
-------------------------------------------
但我個fd
k^2+(k-3)x+1細過等於0
判別式係 k^2-6k+9-4k細過等於0
1細過等於k細過等於9
而我老師又話佢做得岩~
咁究竟邊個岩