trigo function

2008-09-03 11:02 pm
Let y=(3-sinx)/(2+cosx), Find the minimum and maximum value of y
(Do not use calculus to solve the problem)
更新1:

Ans: The maximum value=2+[2(3)^1/2]/3 The minimum value=-2-[2(3)^1/2]/3

回答 (1)

2008-09-05 11:49 am
✔ 最佳答案
Let t = tan(x/2), therefore, sin x = 2t/(1+t^2) and cos x = (1-t^2)/(1+ t^2).Sub. into the function, we get
y = [3 - 2t/(1+t^2)]/[2 + (1-t^2)/(1+t^2)] = [3(1+t^2) - 2t]/[2(1 +t^2) + ( 1 - t^2)]
= (3t^2 - 2t +3)/(2 + 2t^2 + 1 - t^2) = (3t^2 - 2t + 3)/(t^2 + 3).
That is
y(t^2 + 3) = 3t^2 - 2t + 3
yt^2 + 3y - 3t^2 + 2t - 3 = 0
(y-3)t^2 + 2t +(3y - 3) = 0.
For t to be real, delta > or equal to 0. That is
4 - 4(y-3)(3y -3) > = 0
1 - 3y^2 + 12y - 9 > = 0
3y^2 - 12y + 8 < = 0
So y is between [12 +/- sqrt(144 - 96)]/6, that is 2 +/-( 2/3)sqrt3.
So y max. is 2 + (2/3)sqrt 3 and
y min. = 2 - (2/3) sqrt 3.


收錄日期: 2021-04-25 22:35:32
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080903000051KK00934

檢視 Wayback Machine 備份