幾條關於不等式的a.maths問題

2008-09-03 8:21 am
有d步驟我係飛左的
1. Let f(x)=x^2+(1-m)x+2m-5 , where m is a constant . Find the Discriminant of the equ. f(x)=0.
Hence find the range of values of m so that f(x)>0 , for all real values of x.

ans:
discr. = (1-m)^2 - 4(2m-5)
......................
......................
=(m-3)(m-7)
hence part .
f(x)>0 , discr < 0
.........................
...........................
點解當f(x)>0果陣 discr 會細過0

p.s(discr. = 判別式個三角形)
-------------------------------------------------------------------------------------
2.
considerind case1 : x<= -1 case x>-1 (細過等於係 <=)

case 1 :

丨x+1丨=x+1

x=-1

case 2:

丨x+1丨=x+1

0=0

問題是ans是 x => -1 而不是 x <= -1

為啥??
----------------------------------------------------------------------------
3.
Find the range of real values of m for which the wxpression x^2-mx+(m+3) is
always positive for all real values of x.

x^2-mx+(m+3) > 0

by completing method

x^2-mx+(m+3)

=(x-m/2)^2 - m^2/4 +m+3

which will be always positive if
-(m^2/4) + m +3 > 0
......................
......................
點解-(m^2/4) + m +3 會係太過\0的

唔明係因為always positive指成條equ.每parth都係>0 定係 成條++埋埋先>0

i.e每parth都係>0 (x^2)>0 ,(-mx)>0 同埋 (m+3)>0
定係 (x^2-mx+(m+3))成條咁先可以>0
----------------------------------------------------------------------------------
由於不等式太過於煩的開系~長期沒有理會過
所以不清楚的concept太多
麻煩各位了
另外集中解釋便可以~不需要完成題目

回答 (1)

2008-09-03 3:16 pm
✔ 最佳答案
Q1.
For a quadratic function to be always positive, that means the function will never cut the x -axis. If it never cuts the x - axis, the equation ax^2 + bx + c = 0 will never have real roots, for the equation never have real roots, its delta must be smaller then 0. (Same argument applies to a function to be always negative if the coefficient of x^2 term is negative.)
Q2.
When you draw the graph of y = x+1 and y = absolute(x + 1), you will find that the 2 graphs overlaps from x = -1 to + infinity. That means x> and equal to -1 satisfy the equation x + 1 = abs( x + 1).
Q3.
Based on the principle of completing square method, y is a minimum when x = m/2 and y minimum = -(m^2/4) + m + 3. So for y to be always positive, y minimum must be always positive ( that is always above the x - axis). Thererfore, -(m^2/4) + m + 3 must be greater than 0.


收錄日期: 2021-04-25 22:37:43
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080903000051KK00048

檢視 Wayback Machine 備份