有d步驟我係飛左的
1. Let f(x)=x^2+(1-m)x+2m-5 , where m is a constant . Find the Discriminant of the equ. f(x)=0.
Hence find the range of values of m so that f(x)>0 , for all real values of x.
ans:
discr. = (1-m)^2 - 4(2m-5)
......................
......................
=(m-3)(m-7)
hence part .
f(x)>0 , discr < 0
.........................
...........................
點解當f(x)>0果陣 discr 會細過0
p.s(discr. = 判別式個三角形)
-------------------------------------------------------------------------------------
2.
considerind case1 : x<= -1 case x>-1 (細過等於係 <=)
case 1 :
丨x+1丨=x+1
x=-1
case 2:
丨x+1丨=x+1
0=0
問題是ans是 x => -1 而不是 x <= -1
為啥??
----------------------------------------------------------------------------
3.
Find the range of real values of m for which the wxpression x^2-mx+(m+3) is
always positive for all real values of x.
x^2-mx+(m+3) > 0
by completing method
x^2-mx+(m+3)
=(x-m/2)^2 - m^2/4 +m+3
which will be always positive if
-(m^2/4) + m +3 > 0
......................
......................
點解-(m^2/4) + m +3 會係太過\0的
唔明係因為always positive指成條equ.每parth都係>0 定係 成條++埋埋先>0
i.e每parth都係>0 (x^2)>0 ,(-mx)>0 同埋 (m+3)>0
定係 (x^2-mx+(m+3))成條咁先可以>0
----------------------------------------------------------------------------------
由於不等式太過於煩的開系~長期沒有理會過
所以不清楚的concept太多
麻煩各位了
另外集中解釋便可以~不需要完成題目