F4 maths

2008-08-28 8:15 am
1.The equation8x^2-(k+2)x+2=0 has a double root.
a)Find the possible values of k.
b)If k takes the possitive value obtained in a),slove the given equation.
2.Let f(x)=2x^3-x^2-5x-2 and g(x)=x^3-4x^2+x+6.
a)Show that x+1 is a common factor of f(x) and g(x)
b)Factorize f(x) and g(x) completly.
c)(i)It is given that h(x)=3x^3-5x^2-4x+4.Express h(x) in terms of f(x) and g(x).(ii)Solve the equation 3x^3-5x^2-4x+4=0
更新1:

Please list the steps.

回答 (1)

2008-08-28 6:45 pm
✔ 最佳答案
1a)8x2﹣(k + 2)x + 2 = 0 has a double root
So Δ > 0
[-(k + 2)]2﹣4(8)(2) > 0
k2 + 4k + 4﹣64 > 0
k2 + 4k﹣60 > 0
(k + 10)(k﹣6) > 0
-10 < k < 6

2a)f(x) = 2x3﹣x2﹣5x﹣2 and g(x) = x3﹣4x2 + x + 6
f(-1) = 2(-1)3﹣(-1)2﹣5(-1)﹣2 = 0
g(-1) = (-1)3﹣4(-1)2 + (-1) + 6 = 0
So x + 1 is a common factor of f(x) and g(x)
b)    2x2﹣3x﹣2

    __________________

x + 1 / 2x3﹣x2﹣5x﹣2
    
    2x3 + 2x2
   __________________

       -3x2﹣5x

       -3x2﹣3x
     __________________

         - 2x﹣2

         - 2x﹣2
     __________________
So f(x) = (x + 1)(2x2﹣3x﹣2) = (x + 1)(x﹣2)(2x + 1)
    x2﹣5x + 6

    __________________

x + 1 / x3﹣4x2 + x + 6
    
    x3 + x2
   __________________

       -5x2 + x

       -5x2﹣5x
     __________________

         6x﹣6

         6x﹣6
     __________________
So g(x) = (x + 1)(x2﹣5x + 6) = (x + 1)(x﹣2)(x﹣3)

ci)Let h(x) = a[f(x)] + b[g(x)]
So f(x) = 3x3﹣5x2﹣4x + 4 = (2a + b)x3﹣(a + 4b)x2 + (b﹣5a)x + (6b﹣2a)
2a + b = 3 ———(1)
a + 4b = 5 ———(2)
(2) X 2 : 2a + 8b = 10 ———(3)
(3)﹣(1) : 7b = 7
b = 1 ———(4)
put (4) into (1),
2a + 1 = 3
a = 1
So h(x) = f(x) + g(x)

ii)3x3﹣5x2﹣4x + 4 = 0
h(x) = 0
f(x) + g(x) = 0
(x + 1)(x﹣2)(2x + 1) + (x + 1)(x﹣2)(x﹣3) = 0
(x + 1)(x﹣2)[(2x + 1) + (x﹣3)] = 0
(x + 1)(x﹣2)(3x﹣2) = 0
x = -1 or x = 2 or x = 2/3


收錄日期: 2021-04-24 00:42:47
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080828000051KK00065

檢視 Wayback Machine 備份