✔ 最佳答案
(1)令1+1/2+1/3+1/4+1/5=x,1=a,1/5=b
題目變成(x-a)(x-b)-x(x-a-b)=xx+ab-ax-bx-xx+ax+bx
=ab=1*1/5=1/5
(2)1/18+1/54+1/108+1/180+1/270+1/378+1/504+1/648+1/810+1/990
=1/9{1/(1*2)+1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6).......+1/(10*11)}
=1/9{1-1/2+1/2-1/3+1/3-1/4........-1/10+1/10-1/11}
=1/9(1-1/11)=10/99
(3)分子( 2^2+4^2+6^2......+100^2) - (1^2+3^2+5^2+.......+99^2)
=(2-1)(2+1)+(4-3)(4+3)+........(100-99)(100+99)
=3+7+11+.....+199=(3+199)*50/2=5050
分母1+2+3+....10+9+8+....+2+1=55+45=100
5050/100=50.5
(4)先證明當b-a=1時,
(a^2+b^2)/ab=(a^2+b^2-2ab)/ab+2=(b-a)^2/ab+2=1/ab+2
原題目:
(1^2+2^2)/(1*2)+(2^2+3^2)/(2*3)+..+(2000^2+2001^2)/(2000*2001)
=2+1/(1*2)+2+1/(2*3)+.....+2+1/(2000*2001)
=2*2000+(1-1/2+1/2-1/3+.....-1/2000+1/2000-1/2001)
=4000+(1-1/2001)=4000+2000/2001
有錯請指正,謝謝