三角學的應用

2008-08-18 8:10 pm
p.61

12(a)在以下兩種情況中,以x和y表示sin0-和cos0-

(0-="cosin")

tan0-=y

tan0-=x/y

13.已知tan0-=3/4。計算3sin0--4cos0-/3sin0-+4cos0-

14.化簡(a)1/tan^2*sin^2 0-

(b)(sin0- -cos 0-)+2sin0-cos0-

p.62

15.證明:

(a)tan0-開方1-sin^2=sin0-

(b)1_tan^2a=1/cos^2a

回答 (2)

2008-08-18 8:46 pm
✔ 最佳答案
13.已知tanθ=3/4。計算3sinθ-4cosθ/3sinθ+4cosθ
tanθ=3/4
sinθ/cosθ=3k/4k (where k is a constant)
so sinθ=3k and cos =4k
3sinθ-4cosθ/3sinθ+4cosθ
=(9k-16k)/(9k+16k)
=-7k/25
=-7/25//

14.化簡
(a)1/tan^2θ*sin^2 θ
=sin^2 θ/(sin^2θ/cos^2θ)
=sin^2 θ*cos^2θ / sin^2θ
=cos^2θ//
(b)(sinθ-cos θ)^2+2sinθcosθ
=sin^2θ-2cosθsinθ+2sinθcosθ+cos^2θ
=sin^2 θ+cos^2 θ
=1//

tanθ√(1-sin^2 θ)
=tanθ√(cos^2θ)
=sinθ/cosθ * cosθ
=inθ//


2008-08-18 9:40 pm
12a)tanθ= y
sinθ= y / √(y^2 + 1) = y√(y^2 + 1) / (y^2 + 1)
cosθ= 1 / √(y^2 + 1) = √(y^2 + 1) / (y^2 + 1)
b)tanθ= x/y
sinθ= x / √(x^2 + y^2) = x√(x^2 + y^2) / (x^2 + y^2)
cosθ= y / √(x^2 + y^2) = y√(x^2 + y^2) / (x^2 + y^2)

1 - tan^2 a = 1 - (sin^2 a/ cos^2 a) = 1 / cos^2 a


收錄日期: 2021-04-13 15:58:02
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080818000051KK01128

檢視 Wayback Machine 備份