Quadratic Equation 2

2008-08-11 11:46 pm
If the equation x^2+ax+b=0 and x^2+px+q=0 have a common root, prove that (a-p)(bp-aq)=(b-q)^2 .

回答 (2)

2008-08-12 12:17 am
✔ 最佳答案
Let α be the common root, then
α2 + aα + b = 0 = α2 + pα + q
b - q = α(p - a)
α = (b - q)/(p - a)
Then sub it back into the original equation:
α2 + aα + b = 0
(b - q)2/(p - a)2 + a(b - q)/(p - a) + b = 0
(b - q)2 + a(b - q)(p - a) + b(p - a)2 = 0
(b - q)2 + (p - a)[a(b - q) + b(p - a)] = 0
(b - q)2 + (p - a)[ab - aq + bp - ba] = 0
(b - q)2 + (p - a)(- aq + bp) = 0
(b - q)2 + (p - a)(bp - aq) = 0
(b - q)2 = (a - p)(bp - aq)
參考: My Maths knowledge
2008-08-12 4:36 am
Let the common root be k. Then
k^2 + ak + b = 0 ..........(1)
k^2 + pk + q = 0...........(2)
(1) - (2) we get
ak + b - pk - q = 0
k(a - p) = q - b
k = (q-b)/(a-p)..............(3)
p x (1) - a x (2) we get,
pk^2 + apk + bp - ak^2 - apk - aq = 0
k^2( p - a) = aq - bp
k^2 = (aq- bp)/(p -a).........(4)
So the square of (3) = (4), that is
(q-b)^2/(a-p)^2 = (aq- bp)/(p -a)
So (q-b)^2 = (aq- bp)(p -a).


收錄日期: 2021-04-25 22:35:51
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080811000051KK01754

檢視 Wayback Machine 備份