About mathematical induction~(10分)急!
8^n+2x7^n+6 is divisible by 7.
請給予詳細公式.
回答 (3)
嘩, 又有疫症啦......
雞尾包二號隆重登場!
let "8^n+2x7^n+6 is divisible by 7" beS(n)
8^1+2*(7^1)+6=28=4*7 is divisible by 7
therefore S(1) is true
Assume S(k)is true
i.e. 8^k+2(7^k)+6 =7M where M is an integer
Consider
8^(k+1)+2(7^(k+1))+6
=8(8^k)+2(7(7^k))+6
=7(8^k)+12(7^k)+7M
=7(8^k+M)+12(7^k) (8^k+M)is an integer
also 12(7^k) is divisible by 7
therefore S(k+1) is true
by M.I. 8^n+2x7^n+6 is divisible by 7 for all +ve integers
2008-08-05 20:28:27 補充:
仲咩今日次次慢過人><"
好唔開心lo~
唔係最快..又冇左最佳
2008-08-05 20:29:31 補充:
上面哥哥可以讓下我呢個小學級嗎?
參考: me, me
收錄日期: 2021-04-22 00:38:44
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080805000051KK02970
檢視 Wayback Machine 備份