2cosX =2+(sinX)^2..中三數maybe

2008-08-05 8:19 am
如題

2cosX =2+(sinX)^2

求x

回答 (3)

2008-08-05 8:55 am
✔ 最佳答案
2cosx=2+(sinx)^2
2cosx=2+1-(cosx)^2
(cosx)^2+2(cosx)-3=0
(cosx+3)(cosx-1)=0
cosx=-3(rejected) or cosx=1
x=0,360度,720度,.......
2008-08-05 9:05 am


2cosX =2+(sinX)^2

求x

Method:

2cosinX = 2 + (sinX)^2
2cosinX = 2 + [1 - (cosinX)^2]
(cosinX)^2 + 2cosinX - 3 = 0
(cosinX - 1) (cosinX +3) = 0
cosinX = 1 [since (cosinX +3) is always greater than zero]
X = [arc cosin(1)] or 2n times pi where n being an integer

2008-08-05 01:11:51 補充:
According to the question, x cannot be in degree(s). The angle x rfers to should be in radian measure. Therefore I do not consider the above two calculation gave the corect answer at this moment 1:11am Hongkong time.
2008-08-05 9:02 am
2cosX =2+(sinX)^2
2cosx = 2+(1-cos²x)
2cosx = 3-cos²x
cos²x+2cosx-3=0
  -2±√[2²-4(1)(-3)]
cosx=________________
    2(1)
  -2±√16
cosx=_______
   2
  -2±4
cosx=____
   2
  -2+4 -2-4
cosx=____ /____
   2 2
   2  -6
cosx=____ /____
   2 2
cosx=1/-3
因為cosx的值只會在-1和1之間
所以
cosx=1
cosx=cos0° [∵cosx=cos(360°-x)∴cos0=cos360°]
x=0°/360°/720°...etc

2008-08-05 01:11:56 補充:
★☆①
√為開方

★☆②
因為cosx的值只會在-1和1之間
所以
cosx≠-3

★☆③
cos²x+2cosx-3=0 <-此為2次方程
2次方程有2種解法
第一種是先把cos²x+2cosx-3因式分解,是0再求出cox 是多少
即是樓上所用的方法
第二種是我用的方法,把數字代進二次方程的formula內
**formula**
ax²+bx+c=0
 -b±√(b²-4ac)
x=____________
   2a

把數字代入以上formula , 得出
  -2±√[2²-4(1)(-3)]
cosx=________________
    2(1)


收錄日期: 2021-04-27 16:56:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080805000051KK00052

檢視 Wayback Machine 備份