✔ 最佳答案
圓周率
圓周率是指平面上圓的周長與直徑之比 (ratio of the circumference of a circle to the diameter) 。用符號π表示。中國古代有圓率、圜率、周等名稱。
古希臘歐幾里得《幾何原本》(約公元前3世紀初)中提到圓周率是常數,中國古算書《周髀算經》( 約公元前2世紀)中有「徑一而周三」的記載,也認為圓周率是常數。歷史上曾採用過圓周率的多種近似值 ,早期大都是通過實驗而得到的結果,如古埃及紙草書(約公元前1700)中取π=(
圖片參考:
http://www.edp.ust.hk/previous/math/history/5/5_5/1over7.gif
,開創了圓周率計算的幾何方法(亦稱古典方法,或 阿基米德方法),得出精確到小數點後兩位的π值。
中國數學家劉徽在注釋《九章算術》時(263年)只用圓內接正多邊形就求得π的近似值,也得出精確 到兩位小數的π值,他的方法被後人稱為割圓術。南北朝時代的數學家祖沖之進一步得出精確到小數點後 7位的π值(約5世紀下半葉),給出不足近似值 3.1415926和過剩近似值3.1415927,還得到兩個近似 分數值,密率355/113和約率22/7。其中的密率在西方直到1573才由德國人奧托得到,1625年發表於荷蘭工 程師安托尼斯的著作中,歐洲稱之為安托尼斯率。阿拉伯數學家卡西在15世紀初求得圓周率17位精確小數 值,打破祖沖之保持近千年的紀錄。德國數學家柯倫於1596年將π值算到20位小數值,後投入畢生精力, 於1610年算到小數後35位數,該數值被用他的名字稱為魯道夫數。
1579年法國數學家韋達給出π的第一個解析表達式
圖片參考:
http://www.edp.ust.hk/previous/math/history/5/5_5/Image5_5_12b.gif
此後,無窮乘積式、無窮連分數、無窮級數等各種π 值表達式紛紛出現,π值計算精度也迅速增加。1706 年英國數學家梅欽計算π值突破100位小數大關。1873 年另一位英國數學家尚可斯將π值計算到小數點後707位,可惜他的結果從528位起是錯的。到1948年英國的弗 格森和美國的倫奇共同發表了π的808位小數值,成為人工計算圓周率值的最高紀錄。
電子計算機的出現使π值計算有了突飛猛進的發展。1949年美國馬里蘭州阿伯丁的軍隊彈道研究實驗室首 次用計算機(ENIAC)計算π值,一下子就算到2037位小數,突破了千位數。1989年美國哥倫比亞大學研 究人員用克雷-2型和IBM-VF型巨型電子計算機計算出 π值小數點後4.8億位數,後又繼續算到小數點後10.1 億位數,創下新的紀錄。
除π的數值計算外,它的性質探討也吸引了眾多數學家。1761年瑞士數學家蘭伯特第一個証明π是無理數 。1794年法國數學家勒讓德又証明了π2也是無理數。到1882年德國數學家林德曼首次証明了π是 超越數,由此否定了困惑人們兩千多年的「化圓為方」尺規作圖問題。還有人對π的特徵及與其它數字的聯系 進行研究。如1929年蘇聯數學家格爾豐德証明了eπ 是超越數等等。