Division by a monomial help..???

2008-07-28 11:41 am
1)

(9xy^2 - 6y^3) / 3x

2)

(3x^2y - 4xy^2 + 6x^3y^3) / xy

3)

(7x^3y^2 - 14x^5y^3 + 28x^8y^5 - 21x^7y^6) / (7x^3y^2)

4)

(-15x^2y^3z^3 + 20x^3y^2z^2 - 5x^4y^6z^4 - 10x^2y^2z^3) / (5x^2y^2z^2)

5)

[(15a^6n) - (24a^8n) + (6a^5n)] / (3a^4n)

6)

(6x^4 + 2x^3 - 16x^2 - 4x) / (-2x)

-----------

thanks!!

回答 (2)

2008-07-28 12:10 pm
✔ 最佳答案
1)
(9xy^2 - 6y^3)/3x
= 3y^2(3x - 2y)/3x
= [3/3][y^2(3x - 2y)/x]
= y^2(3x - 2y)/x
= 3xy/x - 2y^2/x
= 3y - 2y^2/x

2)
(3x^2y - 4xy^2 + 6x^3y^3)/xy
= xy(3x - 4y + 6x^2y^2)/xy (cancel out xy)
= 3x - 4y + 6x^2y^2
= 6x^2y^2 + 3x - 4y (arrangement)

3)
(7x^3y^2 - 14x^5y^3 + 28x^8y^5 - 21x^7y^6)/7x^3y^2
= 7x^3y^2(1 - 2x^2y + 4x^5y^3 - 3x^4y^4)/7x^3y^3 (cancel out 7x^3y^2)
= 1 - 2x^2y + 4x^5y^3 - 3x^4y^4
= 4x^5y^3 - 3x^4y^4 - 2x^2y + 1

4)
(-15x^2y^3z^3 + 20x^3y^2z^2 - 5x^4y^6z^4 - 10x^2y^2z^3)/5x^2y^2z^2
= 5x^2y^2z^2(-3yz + 4x - x^2y^4z^2 + 2z)/5x^2y^2z^2 (cancel out 5x^2y^2z^2)
= -3yz + 4x - x^2y^4z^2 + 2z
= -x^2y^4z^2 - 3yz + 4x + 2z

5)
(15a^6n - 24a^8n + 6a^5n)/3a^4n
= 3a^5n(5a - 8a^3 + 2)/3a^4n
= (3a^5n/3a^4n)(-8a^3 + 5a + 2)
= a(-8a^3 + 5a + 2)

6)
(6x^4 + 2x^3 - 16x^2 - 4x)/(-2x)
= -2x(-3x^3 - x^2 + 8x + 2)/(-2x) (cancel out -2x)
= -3x^3 - x^2 + 8x + 2
2008-07-28 6:56 pm
For each of these, split the fraction into as many fractions as number of terms in the numerator
Use laws of indices and some numerical cancellations and simplify that's all.
(9xy^2 - 6y^3) / 3x
= (9xy^2/3x) - (6y^3/3x)
=3y^2 - 2y^2/x, in the first 3x cancells and in the second only 3 cancells.
Now you do the remaining to gain confidence.


收錄日期: 2021-05-01 10:56:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080728034143AAcZoOE

檢視 Wayback Machine 備份