Geometry question?

2008-07-22 4:42 pm
I tried hard to do this, but I can't seems to be able solve the question.

Can anyone help.
http://img258.imageshack.us/img258/8398/48271674by8.png

回答 (1)

2008-07-22 7:00 pm
✔ 最佳答案
Let's name the points first. Let A be the upper point, B left low, C right low, D left middle and E right middle.
ADC =180-BAC-ACD=180-20-20=140
BDC = 180-140=40
DCB = 180-DBC-BDC=180-(10+70)-40=60
BEC = 180-EBC-BCD-DCE=180-70-60-20=30
sin(BEC)/BC = sin(ECB)/BE <=> BC = BE*sin(BEC)/sin(ECB)
sin(BDC)/BC = sin(DCB)/BD <=> BC = BD*sin(BDC)/sin(DCB)
BD*sin(BDC)/sin(DCB) = BE*sin(BEC)/sin(ECB)
BE/BD = sin(BDC) / sin(DCB) / (sin(BEC) / sin(ECB))
BE/BD = sin(40) / sin(60) / (sin(30) / sin(80))
BE/BD = 1.461902... (sorry, just temporary)
DE = sqrt(BD^2 + BE^2 - 2*BD*BE*cos(DBE))
DE = BD*sqrt(1 + (BE/BD)^2 - 2*BE/BD*cos(DBE))
DE/BD = sqrt(1 + (BE/BD)^2 - 2*BE/BD*cos(DBE))
BD/DE = 1/sqrt(1 + (BE/BD)^2 - 2*BE/BD*cos(DBE))
BD/DE = 1/sqrt(1 + 1.461902^2 - 2*1.461902*cos(10)) = 1.969616...
sin(x)/BD = sin(DBE) / DE
sin(x) = BD / DE * sin(DBE)
sin(x) = 1.969616 * sin(10) = 0.34202
x = 20
I'm sure this is not the agreed solution, it is obtained through brute force but at least it gives us a hint. It is like consulting the answer at the end of the book.


收錄日期: 2021-05-01 00:42:13
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080722084225AA4WXJq

檢視 Wayback Machine 備份