✔ 最佳答案
(1)
y = arccos (1/x)
cos y = 1/x --> sin y = √(x^2 - 1) / x
differentiate both sides w.r.t. x
sin y (dy/dx) = -1/(x^2)
dy/dx = - 1 / (x^2 sin y) = - 1/ {x^2 sin [√(x^2-1)/x)]}
(2)
y =√( a^2 + x^2) / x
dy/dx = {x [2x (0.5)/ √(a^2 + x^2)] - √(a^2 + x^2)} / (x^2)
= (x^2 - a^2 - x^2) / [x^2 √(a^2 + x^2)]
= - a^2 / [x^2 √(a^2 + x^2)]
2008-07-20 08:03:54 補充:
Revised for question 1
(1)
y = arccos (1/x)
cos y = 1/x --> sin y = √(x^2 - 1) / x
differentiate both sides w.r.t. x
- sin y (dy/dx) = -1/(x^2)
dy/dx = 1 / (x^2 sin y) = 1/ {x^2 [√(x^2-1)/x)]} = 1 / x√(x^2 - 1)