我想問幾條附加數的題目(20點)

2008-07-15 8:27 pm
第一條:1/(1x3)+1/(3x5)+1/(5x7)+...+1/((2n-1)x(2n+1))=n/(2n+1)
第二條:9的n次方減1is divisible by 8
第三條:2的2n次方減1is divisible by 3 for all postive integers n.

回答 (3)

2008-07-15 8:58 pm
✔ 最佳答案
Explanation as follows:

圖片參考:http://i238.photobucket.com/albums/ff245/chocolate328154/Maths306.jpg?t=1216097889


2008-07-15 14:04:21 補充:
注意: Assumption嗰步係要指明 [ Assume P ( k ) is true for SOME positive integers k ];
有d書係寫[ Assume P is true for n = k ], 個n = k同樣表達咗SOME嘅意思
但下面嗰位[Assume P(k) is true,k is a positive integer], 係冇指明到SOME positive integers k

2008-07-15 14:07:04 補充:
lee個純粹係小問題一個, 但唔排除要求嚴格嘅老師會扣掉部分分數= =

2008-07-16 12:20:00 補充:
注意: 003並非完全使用附加數的方法。Comparing the coefficients等是純數常用的方法, 在附加數的課程上是無須用到。
參考: My Maths Knowledge
2008-07-16 12:23 pm
1. Let 1/[(2n-1)(2n+1)]=a/(2n-1)+b/(2n+1)
=>  1=a(2n+1)+b(2n-1)
=>  1=2(a+b)n+(a-b)

Comparing the coefficients of n: 2(a+b)=0 => a+b=0
Comparing the constant terms: a-b=1

Hence, a=0.5 and b=-0.5

Therefore

1/[(2n-1)(2n+1)]=0.5/(2n-1)-0.5/(2n+1)

and

1/(1×3)+1/(3×5)+1/(5×7)+...+1/[(2n-1)(2n+1)]=(0.5/1-0.5/3)+(0.5/3-0.5/5)+(0.5/5-0.5/7)+...+[0.5/(2n-1)-0.5/(2n+1)]
=0.5/1+(-0.5/3+0.5/3)+(-0.5/5+0.5/5)+...+[-0.5/(2n-1)+0.5/(2n-1)]-0.5/(2n+1)
=0.5-0.5/(2n+1)
=n/(2n+1)


2. 9^n-1=9^n+[9^(n-1)-9^(n-1)]+...+(9²-9²)+(9-9)-1
=[9^n+9^(n-1)+...+9²+9]-[9^(n-1)+...+9²+9+1]
=9[9^(n-1)+...+9²+9+1]-[9^(n-1)+...+9²+9+1]
=(9-1)[9^(n-1)+...+9²+9+1]
=8[9^(n-1)+...+9²+9+1]


3. 2^(2n)-1=4^n-1
=4^n+[4^(n-1)-4^(n-1)]+...+(4²-4²)+(4-4)-1
=[4^n+4^(n-1)+...+4²+4]-[4^(n-1)+...+4²+4+1]
=4[4^(n-1)+...+4²+4+1]-[4^(n-1)+...+4²+4+1]
=(4-1)[4^(n-1)+...+4²+4+1]
=3[4^(n-1)+...+4²+4+1]
2008-07-15 9:27 pm

圖片參考:http://www.photo-host.org/img/041263screenhunter_02_jul._15_13.17.gif

2.Let P(n) be the propostion
“9n-1is divisible by 8”
For n=1,
91-1=8 is divisible by 8.
∴P(1) is also true
Assume P(k) is true,k is a positive integer.
i.e. “9k-1=8N,N is an integer ”
For n=k+1,
9k+1-1=9(9k)-1
=9(8N+1)-1
=9(8N)+8
=8(9N+1) which is divisibly by 8.
∴P(k+1) is also true
By principle of mathematical induction ,P(n) is true for all positive intergers n.

3.Let P(n) be the propostion
“22n-1is divisible by 3.”
For n=1,
22-1=3 is divisible by 3.
∴P(1) is also true
Assume P(k) is true,k is a positive integer.
i.e. “22k-1=3N,N is an integer ”
For n=k+1,
22k+2-1=4(22k)-1
=4(3N+1)-1
=3(4N)+3
=3(4N+1) which is divisibly by 3.
∴P(k+1) is also true
By principle of mathematical induction ,P(n) is true for all positive intergers n.



2008-07-20 21:29:10 補充:
我答慢了!所以最佳解答應給Gabriella Montez !!!


收錄日期: 2021-04-15 14:59:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080715000051KK00909

檢視 Wayback Machine 備份