0^ ∞ (0 的無限次)係唔係Indeterminate form???

2008-07-13 9:25 pm
1^∞ 係, 0^0 都係Indeterminate form

咁0^ ∞ (0 的無限次)係唔係Indeterminate form???

同埋點解???

THX

回答 (1)

2008-07-14 6:08 am
✔ 最佳答案
0^∞是未定式(Indeterminate form),因為若單憑f(p)=0^∞,不足以確定lim f(x)的值。
                              x→p

2008-07-13 22:28:20 補充:
更正(眼花睇錯咗):

0^∞絶對係0。一個0已經係0,仲咁多個0,真係想唔係0都唔得。因此0^∞唔係未定式(Indeterminate form)。

2008-07-16 02:18:56 補充:
Assume lim f(x)=0 and lim g(x)=∞
   x→p     x→p

As lim f(x)=0, there exists a real δ1>0 such that 0<|x-p|<δ1 implies |f(x)|<0.5
 x→p

As lim g(x)=∞, there exists a real δ2>0 such that 0<|x-p|<δ2 implies g(x)>1
 x→p

2008-07-16 02:19:17 補充:
Now take 0<|x-p|<δ1+δ2, we have

   0<|f(x)|^g(x)<0.5^g(x)

=> 0≤ lim |f(x)|^g(x)≤ lim 0.5^g(x)=0
    x→p     x→p

=> lim |f(x)|^g(x)=0
   x→p

Hence,

lim f(x)^g(x)=0  [0^∞ form]
x→p

2008-07-17 22:38:13 補充:
Correction:

WRONG:

Now take 0<|x-p|<δ1+δ2, we have

RIGHT:

Now take 0<|x-p|<min(δ1,δ2), we have


收錄日期: 2021-04-15 15:06:40
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080713000051KK01062

檢視 Wayback Machine 備份