✔ 最佳答案
0^∞是未定式(Indeterminate form),因為若單憑f(p)=0^∞,不足以確定lim f(x)的值。
x→p
2008-07-13 22:28:20 補充:
更正(眼花睇錯咗):
0^∞絶對係0。一個0已經係0,仲咁多個0,真係想唔係0都唔得。因此0^∞唔係未定式(Indeterminate form)。
2008-07-16 02:18:56 補充:
Assume lim f(x)=0 and lim g(x)=∞
x→p x→p
As lim f(x)=0, there exists a real δ1>0 such that 0<|x-p|<δ1 implies |f(x)|<0.5
x→p
As lim g(x)=∞, there exists a real δ2>0 such that 0<|x-p|<δ2 implies g(x)>1
x→p
2008-07-16 02:19:17 補充:
Now take 0<|x-p|<δ1+δ2, we have
0<|f(x)|^g(x)<0.5^g(x)
=> 0≤ lim |f(x)|^g(x)≤ lim 0.5^g(x)=0
x→p x→p
=> lim |f(x)|^g(x)=0
x→p
Hence,
lim f(x)^g(x)=0 [0^∞ form]
x→p
2008-07-17 22:38:13 補充:
Correction:
WRONG:
Now take 0<|x-p|<δ1+δ2, we have
RIGHT:
Now take 0<|x-p|<min(δ1,δ2), we have