a-maths!!~

2008-07-11 9:20 pm
As follow As~~

圖片參考:http://www.photo-host.org/img/007248screenhunter_01_jul._11_13.14.gif
更新1:

(c) ans is e^(4a) ,(d) ans is 1/2

回答 (5)

2008-07-12 2:25 am
✔ 最佳答案
As follows~~~
As follows~~~


圖片參考:http://i182.photobucket.com/albums/x4/A_Hepburn_1990/A_Hepburn02Jul111822.jpg?t=1215771920



圖片參考:http://i182.photobucket.com/albums/x4/A_Hepburn_1990/A_Hepburn03Jul111823.jpg?t=1215771929



2008-07-15 07:12:40 補充:
或許閣下的問題有不清楚的地方,但在意見欄中集合各高手之意見,終於找出c和e的答案。
c part可往:
http://i117.photobucket.com/albums/o61/billy_hywung/Jul08/Crazylim2.jpg

2008-07-15 07:12:55 補充:
d part可往:
http://i117.photobucket.com/albums/o61/billy_hywung/Jul08/Crazylim3.jpg

2008-07-15 07:14:04 補充:
多謝各位高手指點,以上兩part的更正,特別鳴謝飛天魏國大將軍張遼。
參考: Myself~~~
2008-07-15 8:42 am
(c) By L' Hospital rule:
http://i117.photobucket.com/albums/o61/billy_hywung/Jul08/Crazylim2.jpg

(d) 條題目本身有錯: arcsin 的 domain 係 -1 <= x <= 1, 所以個 limit 應該係 tends to zero:
http://i117.photobucket.com/albums/o61/billy_hywung/Jul08/Crazylim3.jpg
2008-07-13 2:43 am
我想問
lim (x->0) (arcsinx)/x 都是 1 ?

因為我發覺如果d 的答案是 1/2 的話,那

lim(x->oo) (arcsinx)/2x
= lim (n->0) [arcsin(1/n)]/2(1/n)
= lim (n->0) n[arcsin(1/n)] / 2
= 1/2 ?????/

是= 1/2嗎?
2008-07-12 2:37 am
(b)
Break (2+...+n)/n^2 into 2/n^2 + .... + n/n^2,
trivially, it tends to 0 as N tends to infinity;
However, the whole thing is independent of x,
and will not change no matter how x varies.
2008-07-11 10:42 pm
It should not be Amaths. Amaths doesn't require arcsin and exponential function


收錄日期: 2021-04-23 20:36:45
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080711000051KK01108

檢視 Wayback Machine 備份