✔ 最佳答案
Let the centre of the circle be (h, k). Then it should be equidistant from both of the given lines, i.e.
|(3h - k + 3)/√(32 + 12)| = |(h - 3k - 7)/√(12 + 32)|
|3h - k + 3| = |h - 3k - 7|
3h - k + 3 = h - 3k - 7 or 3h - k + 3 = -h + 3k + 7
2h = -2k - 10 or 4h = 4k + 4
h = - k - 5 or k + 1
Therefore the radius of the circle can be expressed as:
|3h - k + 3|/√10 = √[(h - 2)2 + (k + 1)2]
(3h - k + 3)2/10 = (h - 2)2 + (k + 1)2
For h = k + 1:
(2h + 4)2/10 = (h - 2)2 + h2
4h2 + 16h + 16 = 10(2h2 - 4h + 4)
h2 + 4h + 4 = 5(h2 - 2h + 2)
h2 + 4h + 4 = 5h2 - 10h + 10
4h2 - 14h + 6 = 0
2h2 - 7h + 3 = 0
(2h - 1)(h - 3) = 0
h = 1/2 or 3
k = -1/2 or 2
So the possible centres are (1/2, -1/2) and (3, 2) and respectively, their radii are (√10)/2 and √10
Hence the possible equations are:
(x - 1/2)2 + (y + 1/2)2 = 10/4
x2 + y2 - x - y + 1/2 = 10/4
4x2 + 4y2 - 4x - 4y - 8 = 0
OR
(x - 3)2 + (y - 2)2 = 10
x2 + y2 - 6x - 4y + 13 = 10
x2 + y2 - 6x - 4y + 3 = 0
2008-07-06 19:44:45 補充:
For h = - k - 5, the discriminant of the quadratic equation formed is negative, i.e. no real solutions.