三角形數學問題(10點)

2008-07-05 1:13 am
The lengths of the sides of triangle ABC are AB=5, BC=4 and CA=5.
Then cosA=??

如果個三角形唔係直角咁點計???
更新1:

sorry~~AB=6至係~~!!

更新2:

how abt the formula of sinA and tanA???

回答 (4)

2008-07-05 5:00 am
✔ 最佳答案
The lengths of the sides of triangle ABC are AB=6, BC=4 and CA=5.
Then cosA=??


cosA=[AB^2+AC^2-BC^2]/2(AB)(AC)

=(36+25-16)/2(6)(5)

=45/60

=3/4 //

2008-07-05 13:52:56 補充:
A=41-24-34.64
sin A=0.6614 (4 sig. fig.)
tan A=0.8819 (4 sig. fig.)
2008-07-05 1:42 am
If you have not learn the cosine rule, following is the alternative:
ABC is an isos. triangle, let AX be the perpendicular line from A to BC, therefore, BX = 2. Therefore angle BAX = arcsin(2/5) = 23.578 degree.
Therefore angle A = 2 x angle BAX = 47.156 degree.
Therefore, cosA = 0.68.
2008-07-05 1:24 am
cosA=[AB2+AC2-BC2]/2(AB)(AC)
=(25+25-16)/2(5)(5)
=17/25//


2008-07-05 18:33:17 補充:
cosA=[AB^2+AC^2-BC^2]/2(AB)(AC)
=(36+25-16)/2(6)(5)
=45/60
=3/4
2008-07-05 1:20 am
餘弦定律 cosine formula

a^2 + b^2 - c^2 = 2*a*b* cos(C)

5^2+5^2-4^2 = 2*5*5*cosA

34 = 50 * cos A

cos A = 0.68

A~ 47.15 deg

2008-07-04 17:38:55 補充:
係喎,題目問緊 cos A

咁都俾你執到雞 o_O ??

2008-07-05 11:19:47 補充:
HAHA, 又一次被 eelyw 技術性擊倒 tim~


收錄日期: 2021-04-19 12:44:21
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080704000051KK01684

檢視 Wayback Machine 備份