the subsidiary angle form

2008-07-04 3:48 am
本書到寫asinθ+bcosθ=√(a²+b²)cos(θ-α), where tanα=a/b
跟住佢就做一條例題
√3 sinθ-cosθ
=√[(√3)²+(-1)²] cos(θ-α)
=2cos(θ-α)
∵ √3
  tanα=____
-1
∴ α=120° <---( cosα=-1/2 , sinα=(√3)/2 , αis in the 2nd quadrant
∴2cos(θ-α)=2cos(θ-120°)

1.我唔明點解佢冇啦啦話cosα=-1/2 , sinα=(√3)/2
2.佢本身又冇講明個α係第幾quadrant ,咁我可唔可以咁做
∵α=-45°
∴2cos(θ-α)=2cos[θ-(-45°)]=2cos(θ+45°)
更新1:

顯示得唔係咁好... √3 sinθ-cosθ =√[(√3)²+(-1)²] cos(θ-α) =2cos(θ-α) 因為tanα=(√3)/(-1) ..... 仲有... √ 係等於開方... 唔知點解佢顯示到好似個剔號咁

回答 (2)

2008-07-05 9:20 am
✔ 最佳答案
First, I list out the format of subsidiary angle form
1. a sinθ+ b cosθ = R sin(θ+α)
2. a sinθ- b cosθ = R sin(θ-α)
3. a cosθ+ b sinθ = R cos(θ-α)
4. a cosθ- b sinθ = R cos(θ+α)

In practice, you ALWAYS ASSUME α to be acute and R > 0, so as to make the transformation easier.

If you don't want to remember these formulae, then you only need to know:

"Subsidiary angle form is DERIVED FROM compound angle formulae."

That is, you can simply expand out the RHS and equate the coefficients of sin x and cos x on both sides
(You don't even remember R = √(a²+b²) and tanα= a/b!!)
2008-07-04 5:05 am
你的問題看來只不過是不知
asinθ+bcosθ 如何等於√(a²+b²)cos(θ-α), where tanα=a/b


asinθ+bcosθ
=√(a²+b²)[(a/√(a²+b²))(sinθ)+(b/√(a²+b²))(cosθ)]
=√(a²+b²)cos(θ-α)

當中cosα=b/√(a²+b²),sinα=a/√(a²+b²)
則tanα=a/b

條例題中a=√3,b=-1
cosα=-1/2 , sinα=(√3)/2

α一定是第二quadrant﹐因為只有此quadrant sin是+而cos是-

2008-07-03 21:05:52 補充:
其實formula背不背都冇所謂


收錄日期: 2021-04-26 13:03:48
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080703000051KK02343

檢視 Wayback Machine 備份