✔ 最佳答案
a^2+b^2+c^2=2
(a^2+b^2+c^2)^2=2^2
a^4+b^4+c^4=4=4-2(a^2b^2+a^2c^2+b^2c^2)
in order to find the sup of a^4+b^4+c^4
4-2(a^2b^2+a^2c^2+b^2c^2) must be largest
2(a^2b^2+a^2c^2+b^2c^2) must be smallest
thus 2(a^2b^2+a^2c^2+b^2c^2)=0 when a=b=0 or b=c=0 or a=c=0
therefore, sup a^4+b^4+c^4=4
let f(a,b,c)=a^4+b^4+c^4
let g(a,b,c)=a^2+b^2+c^2=2
grad f = (4a^3,4b^3,4c^3)
grad g = (2a,2b,2c)
by Lagrange multipliers
4a^3=2Xa -(1)
4b^3=2Xb -(2)
4c^3=2Xc -(3) where X is some constant
from 1,2,3
2a^2=X -(4)
2b^2=X -(5)
2c^2=X -(6) where a!=0,b!=0,c!=0 (for a=0/b=0/c=0 case it is the max case which shown in above)
(4)+(5)+(6):
2(a^2+b^2+c^2)=3X
X=4/3
sub X=4/3 into 4,5,6
a^2 = 2/3 ->a^4=4/9
b^2=2/3 ->b^4=4/9
c^2=2/3 ->c^4=4/9
f(a,b,c)=a^4+b^4+c^4 = 4/3
the inf of a^4+b^4+c^4 =4/3
the range of a^4+b^4+c^4 is [4/3,4]