✔ 最佳答案
d/dx[tan(x/2)]
=(1/2)[sec(x/2)}^2
=1/{2[cos(x/2)]^2}
=2/[2(1+cosx)]
=1/(1+cosx)
=RHS
d/dx ( x + sinx )
= 1 + cosx
............
d/dx(uv) = v(du/dx) + u(dv/dx)
v(du/dx) = d/dx(uv) - u(dv/dx)
Therefore ,
積分符號[ v(du/dx) ] dx = 積分符號 d/dx(uv) dx - 積分符號 u(dv/dx) dx
積分符號[ v(du/dx) ] dx = uv - 積分符號 u(dv/dx) dx
Now ,
putting v in (x+sinx) and du/dx = 1/(1+cosx) => u = tan(x/2)
積分符號[(x+sinx)/(1+cosx)]dx
= tan(x/2)(x+sinx) - 積分符號 u(dv/dx) dx
= tan(x/2)(x+sinx) - 積分符號 tan(x/2)[1 + cosx ] dx
.........
tan(x/2)[1 + cosx ]
=[(1+cosx)*sqtr(1-cosx)]/sqrt(1+cosx)
=sqrt(1+cosx)*sqtr(1-cosx)]
=sqrt[1-(cosx)^2]
=sqrt(sinx)^2
=sinx
tan(x/2)(x+sinx) - 積分符號 tan(x/2)[1 + cosx ] dx
= tan(x/2)(x+sinx) - 積分符號 sinx dx
= tan(x/2)(x+sinx) + cosx + C
2008-07-02 18:43:09 補充:
Let v = x + sinx , dv/dx = 1+ cosx
2008-07-03 09:53:22 補充:
多謝下面詳細地解析我是怎樣d tan(x/2)
不過我覺得考生應該要記住
(d/dx) :
(d/dx) sinx = cosx
(d/dx) cosx = -sinx
(d/dx) tanx = (secx)
(d/dx) secx = tanxsecx
(d/dx) cscx = -cotx cscx
(d/dx) cotx = -cscx
咁樣考試時就不會用咁多時間計呢到 ~~
我諗書是不會印晒出來,要我們找出來