✔ 最佳答案
e^x = 1 + x + x^2/2! + x^3/3! + x^4/4! + x^5/5! +...................
Put x = ix, where i is the imaginary number sqrt(-1). We get
e^(ix) = 1 + (ix) + (ix)^2/2! + (ix)^3/3! + (ix)^4/4! + (ix)^5/5! + ..................
= 1 + ix - x^2/2! -ix^3/3! + x^4/4! + ix^5/5! + .................
= (1 - x^2/2! + x^4/4! + ............) + i(x - x^3/3! + x^5/5! + .................).
But e^(ix) = cosx + isinx. Therefore,
cosx = Re[e^(ix)] = 1 - x^2/2! +x^4/4! - x^6/6! +................. And
sinx = Im[e^(ix)] = x - x^3/3! + x^5/5! -x^7/7! + ...................
2008-06-27 17:27:59 補充:
You may also use the Maclaurin theorem to prove it.