maths!~~!

2008-06-25 5:40 pm

回答 (2)

2008-06-25 11:03 pm
✔ 最佳答案
Q1. a.
r^2 = AO^2 = CO^2
3^2 + (3x-17)^2 = 3^2 + [(15-x)/2]^2
6x-34 = 15-x
x=7
b.
r = sqrt( 3^2 + (3x-17)^2 ) = 5
diameter = 10 cm

Q.2 a.
diameter = 2*OR = PR-RQ=16-4=12 cm
TR/2=NR=MR (given)
= sqrt(OR^2-OM^2) (畢氏定理)
= sqrt(6^2-3^2)
=sqrt 27 cm
b.
OB = 半徑 = OQ = 6+4 = 10 cm
AB/2 = MB = sqrt(OB^2 -OM^2) (畢氏定理)
AB = 2*sqrt(91)

Q3. a
ON = sqrt ( 17^2 - (16/2)^2 ) (畢氏定理)
= 15 cm
b.
NP = 半徑-ON = 17-15=2 cm

Q4.
NC = BC/2 (perpendicular from chord bisect chord)
ND = AD/2 (perpendicular from chord bisect chord)
OC = sqrt(ON^2+NC^2) (畢氏定理)
15 cm
OD = sqrt(ON^2+ND^2) (畢氏定理)
20 cm
(兩個都是 3:4:5)
相差 = 5 cm

2008-06-25 19:51:24 補充:
> 3+AM=r(畢氏定理)
二次方呢? D二次方去晒邊呀^^?
2008-06-25 11:11 pm
設圓的半徑為 r cm
3+AM=r(畢氏定理)
3+OC=r(畢氏定理)
∴AM=OC
∴AM=OC
∴3x-17=15-x
x=8 cm
∴半徑=3+7=開方(58)
直徑=2開方(58)cm

PQ=16+4=20cm
PQ是大圓的直徑
∴大圓的半徑=10cm
∴OQ=10cm
OR=10-4=6cm
NR=開方(6-3)=開方(27)=3開方(3)cm
∴TR=6開方3cm
OB=OQ=10cm(同圓半徑)
MB=開方(10-3)=開方91
∴AB=2開方91cm

因為AB垂直於PQ=>PQ是圓的直徑
AN=8cm
設圓心為O
AO=17cm(同圓半徑)
NO=開方(17-8)=15cm
∴AB與圓心的距離為15cm
NP=17-15=2cm

BC=9cm
∴OC=開方(9+12)=15cm
ND=16cm
OD=開方(12+16)=20cm
∴兩圓半徑之差=20-15-5cm


收錄日期: 2021-04-23 20:34:08
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080625000051KK00476

檢視 Wayback Machine 備份