✔ 最佳答案
圖片參考:
http://i295.photobucket.com/albums/mm158/Audrey_hepburn2008/A_Hepburn01Jun222318.jpg?t=1214147975
From the figure, TD is the height of the tower. Let TD = h
AD = h / tan30* = h√3, BD = h, CD = h / tan60* = h / √3
Now, consider triangle ABD
Apply cosine law,
cosABD = (AB2 + BD2 - AD2) / 2AB X BD
cosABD = (3600 + h2 - 3h2) / 120h = (1800 - h2) / 60h ─── (1)
Consider triangle BCD,
Apply cosine law,
cosCBD = (BC2 + BD2 - CD2) / 2BC X BD
cosCBD = (2500 + h2 - h2/3) / 100h
cosCBD = (3750 + h2) / 150h ─── (2)
Since angle ABD + angle CBD = 180*
So, (2): cosCBD = cos(180* - ABD) = -cosABD
Therefore, (1800 - h2) / 60h = -(3750 + h2) / 150h
9000 - 5h2 = -7500 - 2h2
h2 = 5500
h = 74.16 (cor. to 2 d.p.) or -74.16 (rejected)
Therefore, the height of the tower is 74.16 m.