數學問題(sin)

2008-06-23 12:36 am
find A and B, trigonometrical expressions independent of x, that
sin(x)/[sin(x-a)sin(x-b)] can be expressed in the form A/sin(x-a) + B/sin(x-b)
更新1:

answers: A= sin(a)/sin(a-b) , B = -sin(b)/sin(a-b)

更新2:

hawk_wing_1999 完全正確

回答 (1)

2008-06-23 1:24 am
✔ 最佳答案
A/sin(x-a) + B/sin(x-b)
=[Asin(x-b)+Bsin(x-a)]/[sin(x-a)sin(x-b)]
∴Asin(x-b)+Bsin(x-a)=sinx
∴sinx=A(sinxcosb-cosxsinb)+B(sinxcosa-cosxsina)
RHS=sinx(Acosb+Bcosa)-cosx(Asinb+Bsina)
By combining coeff.
Acosb+Bcosa=1---------(1), Asinb+Bsina=0---------(2)
From (1), Acosb=1-Bcosa
From (2), Asinb=-Bsina
∴tanb=Bsina/(1-Bcosa)
tanb(1-Bcosa)=Bsina/tanb
tanb=Bsina/tanb+Bcosatanb
∴B=tanb/(sina/tanb+cosatanb)
B=tanb/(sina+cosatanb)
From (2), A=-Bsina/sinb
A=-tanbsina/[sinb(sina+cosatanb)]

2008-06-22 17:26:50 補充:
It should be
∴tanb=-Bsina/(1-Bcosa)

tanb(1-Bcosa)=-Bsina/tanb

tanb=-Bsina/tanb+Bcosatanb

∴B=tanb/(-sina/tanb+cosatanb)

B=tanb/(cosatanb-sina)

From (2), A=-Bsina/sinb

A=-tanbsina/[sinb(cosatanb-sina)]

=tanbsina/[sinb(sina-cosatanb)]


收錄日期: 2021-04-16 22:47:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20080622000051KK01589

檢視 Wayback Machine 備份